AP ${ }^{\oplus}$ CALCULUS AB
 2011 SCORING GUIDELINES (Form B)

Question 4

Consider a differentiable function f having domain all positive real numbers, and for which it is known that $f^{\prime}(x)=(4-x) x^{-3}$ for $x>0$.
(a) Find the x-coordinate of the critical point of f. Determine whether the point is a relative maximum, a relative minimum, or neither for the function f. Justify your answer.
(b) Find all intervals on which the graph of f is concave down. Justify your answer.
(c) Given that $f(1)=2$, determine the function f.
(a) $f^{\prime}(x)=0$ at $x=4$
$f^{\prime}(x)>0$ for $0<x<4$
$f^{\prime}(x)<0$ for $x>4$
Therefore f has a relative maximum at $x=4$.
(b) $f^{\prime \prime}(x)=-x^{-3}+(4-x)\left(-3 x^{-4}\right)$

$$
=-x^{-3}-12 x^{-4}+3 x^{-3}
$$

$$
=2 x^{-4}(x-6)
$$

$$
=\frac{2(x-6)}{x^{4}}
$$

$f^{\prime \prime}(x)<0$ for $0<x<6$
The graph of f is concave down on the interval $0<x<6$.
(c) $f(x)=2+\int_{1}^{x}\left(4 t^{-3}-t^{-2}\right) d t$
$=2+\left[-2 t^{-2}+t^{-1}\right]_{t=1}^{t=x}$
$=3-2 x^{-2}+x^{-1}$
$3: \begin{cases}1: x=4 \\ 1: \text { relative maximum } \\ 1: \text { justification }\end{cases}$
$3:\left\{\begin{array}{l}2: f^{\prime \prime}(x) \\ 1: \text { answer with justification }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { antiderivative } \\ 1: \text { answer }\end{array}\right.$

Work for problem 4(a)

$f(x)>0$

$$
\text { for } \begin{aligned}
f^{\prime}(x) & =0,(4-x) x^{-3}=0 \Rightarrow \frac{1}{x^{3}} \cdot(4-x)=0, x \neq 0 \\
\Rightarrow & x=4 \text { This is the } \\
& x-\text { coordinates of the ariticect pow n }
\end{aligned}
$$

Derionvine test '
Thus the poise wither

$$
f^{\prime}(x) \text { after } x=4 \text { is negation }
$$

maximum since

$$
\left(\begin{array}{l}
f^{\prime}(x)>0 \text { for } 0<x<4 \\
f^{\prime}(x)<0 \text { for } 4<x<+\infty
\end{array} \quad \begin{array}{l}
\text { goes from } \\
\text { decern }
\end{array} \quad \begin{array}{l}
\text { and }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { at that points } f(x) \\
& \text { goes from che cess a }
\end{aligned}
$$

Work for problem 4(b)

$$
f^{\prime}(x)=4 x^{-3}-x^{-2}
$$

f is ronnceso down for $\quad f^{\prime \prime}(x)=e^{\prime}$
$f^{\prime \prime}(x)=-12 x^{-4}+2 x^{-3}=0$
$\Rightarrow \quad-6 x^{-4}+x^{-3}=0$
$\Rightarrow \quad x^{-3}\left(\frac{-6}{x}+1\right)=0$
$\Rightarrow \quad \frac{1}{x^{3}}\left(-\frac{6}{x}+1\right)=0$
$\Rightarrow 1-\frac{6}{x}=0$

$$
\Rightarrow x=6
$$

$f^{\prime \prime}(x)<0$ for $0<x<6 \quad$ That s the interval
and
$f^{\prime \prime}(x)>0$ for $6<x<+\infty \quad 0<x<6$

Work for problem 4(c)

$$
\begin{aligned}
& f(x)=\int_{1}^{x}\left(4 u^{-3}-u^{-2}\right) d x+2 \\
= & {\left[-2 u^{-2}+u^{-1}\right]_{1}^{x}+2 } \\
= & -2 x^{-2}+x^{-1}-[-2+1]+2 \\
= & -2 x^{-2}+x^{-1}+2-1+2 \\
= & -2 x^{-2}+x^{-1}+3
\end{aligned}
$$

Work for problem 4(a)

$$
\begin{aligned}
& f^{\prime}(x)=(4-x) x^{-3}=0 \\
& 4 x^{-3}-x^{-2}=0 \\
& x^{-2}\left(\frac{4}{x}-1\right)=0 \\
& x=0, \quad \frac{4}{x}-1=0 \\
& \frac{4}{x}=1 \\
& x=4
\end{aligned}
$$

$$
\begin{array}{c|c|c|c|}
\text { Interval } & x<0 & 0<x \leq 4 & x>4 \\
\text { Sign fin }(x) & - & - & - \\
\text { Behavior } & \text { Deck } & \text { Incr } & \text { Decd }
\end{array}
$$

$$
\begin{aligned}
& \text { at } x=0 \rightarrow \text { relative minimum } \\
& \text { at } x=4 \rightarrow \text { relative maximum }
\end{aligned}
$$

Work for problem 4(b)

$$
\begin{aligned}
f^{\prime \prime}(x)= & (4-x)\left(-3 x^{-4}\right)+\left(x^{-3}\right)(-1) \\
= & -12 x^{-4}+3 x^{-3}-x^{-3} \\
= & -x^{-3}\left(12 x^{-1}-3+1\right)=0 \\
& \frac{\mid 2}{x}=2 \\
& x=6
\end{aligned}
$$

$$
\begin{aligned}
& f \text { is never concave donn beriofe } \\
& f^{\prime \prime}(x) \text { is aloud putty }
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\int 4 x^{-3}-x^{-2} d x \\
& =-2 x^{-2}+x^{-1}+c \\
2 & =-2(1)^{-2}+(1)^{-1}+c \\
2 & =-2+1+c \\
c & =3 \\
\downarrow & \\
f(x) & =-2 x^{-2}+x^{-1}+3
\end{aligned}
$$

```
Work for problem 4(a)
```

$$
\begin{aligned}
& \delta^{\prime}(x)=0 \\
& (4-x) x^{-3}=0 \\
& x^{-3}=0 \quad \quad^{x=4} \\
& \text { 央 } \\
& x=0 \\
& f^{\prime}(4)=(4-4) x^{8}(4)^{-3}=0 \\
& \text { we cunt tell if this a is a relative } \\
& \text { max or min w/so its neither }
\end{aligned}
$$

NO CALCULATOR ALLOWED

Work for problem 4(b)
$\begin{array}{ll}u=x^{-3} u-x & v=x^{-3} \\ u^{\prime}=-1 & v^{\prime}=-3 x^{-4}\end{array}$
$f^{\prime \prime}(x)=-x^{-3}+\left(-12 x^{-4}+3 x^{-3}\right)$

at $(0,4)$ its a concavedown

Work for problem 4(c)

$$
u=4-x \quad d x=-d u
$$

$$
\delta(x)=\int \approx(4-x) x^{-3} d x
$$

$$
d u=-1 d x
$$

$$
\begin{aligned}
& =-\left[\frac{u x^{-2} d x+c}{-2}+\frac{(u-x) x^{-2}}{2}+c\right. \\
& =\frac{(u-x) x^{-2}}{2}+\frac{1}{2} \\
& f(1)=\frac{(4-1)(1)^{-2}}{2}+C \\
& 2=\frac{3}{2}+C \\
& c=\frac{1}{2}
\end{aligned}
$$

AP ${ }^{\circledR}$ CALCULUS AB
 2011 SCORING COMMENTARY (Form B)

Question 4

Sample: 4A

Score: 9
The student earned all 9 points. In part (c) the student's differential does not match the variable in the integrand, but no points were deducted.

Sample: 4B

Score: 6
The student earned 6 points: 1 point in part (a), 2 points in part (b), and 3 points in part (c). The student was eligible for 1 of the 3 points in part (a), which was earned by showing that f has a relative maximum at $x=4$. In part (b) the student correctly computes $f^{\prime \prime}(x)$, so the first 2 points were earned. In part (c) the student's work is correct.

Sample: 4C

Score: 3
The student earned 3 points: no points in part (a), 2 points in part (b), and 1 point in part (c). In part (a) the student incorrectly declares that both $x=0$ and $x=4$ are x-coordinates of critical points. In part (b) the student correctly computes $f^{\prime \prime}(x)$, so the first 2 points were earned. The student's interval is incorrect, so the answer point was not earned. In part (c) the student presents a differential equation solution. For a correct solution, the first point was earned for a correct antiderivative, the second point for use of the initial condition, and the third point for the answer. This student's antiderivative is incorrect, so the first point was not earned. The initial condition is used correctly, so the second point was earned. Because the student's antidifferentiation is incorrect, the student was not eligible for the answer point.

