
© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first. To maintain scoring intent, a single error is generally accounted for only once
per question thereby mitigating multiple penalties for the same error. The error categorization below is for cases not
adequately covered by the question-specific rubric. Note that points can only be deducted if the error occurs in a part that
has earned credit via the question-specific rubric. Any particular error is penalized only once in a question, even if it
occurs on different parts of that question.

Nonpenalized Errors

spelling/case discrepancies if no
ambiguity*

local variable not declared if others are
declared in some part

use keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without parens;
e.g., new Fish;

missing () on parameterless method call

missing () around if/while conditions

missing ; when majority are present

missing public on class or constructor
header

extraneous [] when referencing entire
array

extraneous size in array declaration,
e.g., int[size] nums = new int[size];

 Minor Errors (1/2 point)

confused identifier (e.g., len for length
or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use equals or compareTo method on
primitives, e.g., int x; …x.equals(val)

array/collection access confusion ([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

Applying Minor Errors (½ point):
A minor error that occurs exactly
once when the same concept is
correct two or more times is
regarded as an oversight and not
penalized. A minor error must be
penalized if it is the only
instance, one of two, or occurs
two or more times.

 Major Errors (1 point)

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of variable
identifier; e.g., Bug.move() instead of
aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by parameter)

use class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counter example, note that if a student
declares “Bug bug;” then uses “Bug.move()” instead of “bug.move()”, the context does not allow for the reader to
assume the object instead of the class.

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4: GridChecker (GridWorld)

Part (a) actorWithMostNeighbors 4 points
Intent: Identify and return actor in this.gr with most neighbors; return null if no actors in grid

 +1 Consider all occupied locations or all actors in grid
 +1/2 Iterates over all occupied locations in this.gr
 +1/2 Performs action using actor or location from this.gr within iteration

 +1 1/2 Determination of maximum number of neighbors
 +1/2 Determines number of occupied neighboring locations of a location *
 +1 Correctly determines maximum number of neighbors

 +1 1/2 Return actor
 +1/2 Returns reference to Actor (not Location)
 +1 Returns reference to a correct actor; null if no actors in this.gr

*Note: This may be done using getOccupiedAdjacentLocations, getNeighbors, or an

iterative get of surrounding locations

Part (b) getOccupiedWithinTwo 5 points
Intent: Return list of all occupied locations within 2 rows/columns of parameter, parameter excluded

 +1/2 Creates and initializes local variable to hold collection of locations

 +2 Consider surrounding locations
 +1/2 Considers at least two locations 1 row and/or 1 column away from

parameter
 +1/2 Considers at least two locations 2 rows and/or 2 columns away from

parameter
 +1 Correctly identifies all and only valid locations within 2 rows and

2 columns of parameter

 +1 Collect occupied locations†
 +1/2 Adds any location object to collection
 +1/2 Adds location to collection only if occupied

 +1 1/2 Return list of locations
 +1/2 Returns reference to a list of locations
 +1/2 List contains all and only identified locations†
 +1/2 Parameter loc excluded from returned list

†Note: Duplication of locations in returned list is not penalized

Usage: –½ parameter dyslexia in new Location constructor invocation

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4: GridChecker (GridWorld)

Part (a):

public Actor actorWithMostNeighbors() {
 if (0 == this.gr.getOccupiedLocations().size()) {
 return null;
 }
 Location where = null;
 int most = -1;
 for (Location loc : this.gr.getOccupiedLocations()) {
 if (most < this.gr.getOccupiedAdjacentLocations(loc).size()) {
 most = this.gr.getOccupiedAdjacentLocations(loc).size();
 where = loc;
 }
 }
 return this.gr.get(where);
}

// Alternative solution (uses getNeighbors):

public Actor actorWithMostNeighbors() {
 if (0 == this.gr.getOccupiedLocations().size()) {
 return null;
 }
 Location where = this.gr.getOccupiedLocations().get(0);
 for (Location loc : this.gr.getOccupiedLocations()) {
 if (this.gr.getNeighbors(where).size() <
this.gr.getNeighbors(loc).size()) {
 where = loc;
 }
 }
 return this.gr.get(where);
}

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4: GridChecker (GridWorld) (continued)

Part (b):

public List<Location> getOccupiedWithinTwo(Location loc) {
 List<Location> occupied = new ArrayList<Location>();
 for (int row = loc.getRow() - 2; row <= loc.getRow() + 2; row++) {
 for (int col = loc.getCol() - 2; col <= loc.getCol() + 2; col++) {
 Location loc1 = new Location(row, col);
 if (gr.isValid(loc1) && this.gr.get(loc1) != null &&
!loc1.equals(loc)) {
 occupied.add(loc1);
 }
 }
 }
 return occupied;
}

// Alternative solution (uses getOccupiedLocations):

public List<Location> getOccupiedWithinTwo(Location loc) {
 List<Location> occupied = new ArrayList<Location>();
 for (Location loc1 : this.gr.getOccupiedLocations()) {
 if ((Math.abs(loc.getRow() - loc1.getRow()) <= 2)
 && (Math.abs(loc.getCol() - loc1.getCol()) <= 2)
 && !loc1.equals(loc)) {
 occupied.add(loc1);
 }
 }
 return occupied;
}

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4

Overview

This question involved reasoning about the code from the GridWorld case study, emphasizing use of the
two-dimensional grid (rather than critter or actor definitions) and ArrayList processing. Students were
asked to implement two unrelated methods of a GridChecker class. In part (a),
actorWithMostNeighbors, students were required to retrieve all occupied locations in a grid,
determine the number of neighbors of each, and return the actor with the most neighbors or null if the grid
contained no actors. This could be accomplished by calling the getOccupiedLocations method of
the grid object, then iterating over those locations, using each as the parameter to either the
getOccupiedAdjacentLocations or getNeighbors method. Some students chose to iterate
over the entire grid and check each location for the presence of an actor. Students needed to create,
initialize and maintain a variable to track the maximum, and to return the correct actor reference. In part
(b), getOccupiedWithinTwo, students were required to return a list containing all occupied locations
within two rows and two columns of the given parameter. There were many viable solution approaches
and the set of student solutions included most of them. Some students used the
getOccupiedLocations method to access every occupied location in the grid, then needed to
exclude those that were not within two rows and columns of the parameter. Some iterated over only
locations that were within two rows and columns of the parameter, including only those in that range that
were occupied. Others used the getValidAdjacentLocations method to access the locations
within one row and one column of the parameter, then used those locations to access all occupied
locations within two rows and columns of the parameter. In each case, students had to ensure that each
location was valid and occupied and also had to exclude the parameter from the returned list.

Sample: 4A
Score: 8

In part (a) the student retrieves all occupied locations by calling gr.getOccupiedLocations and
performs an action on each location in the context of a loop but does not include .size in the
structure of the loop. The number of occupied neighboring locations is retrieved correctly using the size of
the list returned by the method gr.getOccupiedAdjacentLocations . The maximum number of
neighbors is correctly determined by initializing loc to the first element of the occupied locations list,
comparing the number of adjacent occupied locations of loc to the number of occupied adjacent
locations of each location in the occupied locations list, and maintaining the maximum variable. The
student returns the actor found in the maintained location after the completion of the loop. If no occupied
locations exist in the grid, null is returned. Part (a) earned

()

()
()

3½ points.

In part (b) the student does not correctly instantiate the list occupiedLocs. The student iterates through
all locations that are within two rows and two columns of the parameter. The student correctly checks if the
location is both valid and occupied before adding the location to the list. The student also correctly prevents
the parameter loc from being added to the list. The correct list is then returned. Part (b) earned 4½
points.

AP® COMPUTER SCIENCE A
2010 SCORING COMMENTARY

Question 4 (continued)

Sample: 4B
Score: 6

In part (a) the student retrieves all occupied locations by calling gr.getOccupiedLocations and
performs an action on each location in the context of a loop. The number of occupied neighboring
locations is retrieved correctly using the size of the list returned by the method gr.getNeigbors .
The maximum number of neighbors is correctly determined by initializing most to 0, comparing most
to the size of each gr.getNeighbors list, and maintaining the most variable. The student also
maintains an actor variable when the number of neighbors is greater than max and returns that actor
after the completion of the loop. However, when all actors in the grid have zero neighbors, the check will
never evaluate to true. Since the Actor variable winner will never be updated in this case, the
student did not earn the “Returns reference to a correct actor” point. Part (a) earned 3 points.

()

()

()

In part (b) the student does not correctly instantiate the list locs. The student iterates through all locations
that are within two rows and two columns of the parameter and verifies that each location is valid. However,
the student does not ensure that the location is occupied. The student adds actors instead of locations to the
list locs and thus did not earn either of the “Collect occupied locations” ½ points. The student also does
not attempt to exclude the parameter loc from the list. The final compiled list is then returned after the
iteration. Part (b) earned 3 points.

Sample: 4C
Score: 1.5 (rounded to 2)

In part (a) the student correctly returns a reference to an actor. Part (a) earned ½ point.

In part (b) the student creates and initializes an ArrayList. The reference to the list is returned. Part (b)
earned 1 point.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

https://www.collegeboard.com

	AP® COMPUTER SCIENCE A
	2010 GENERAL SCORING GUIDELINES
	Nonpenalized Errors
	 Minor Errors (1/2 point)
	 Major Errors (1 point)

	2010 SCORING GUIDELINES
	Question 4: GridChecker (GridWorld)

	2010 CANONICAL SOLUTIONS
	Question 4: GridChecker (GridWorld)

	2010 SCORING COMMENTARY
	Question 4

