

AP® Computer Science A
2010 Scoring Guidelines

The College Board

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the College Board is composed of more than 5,700 schools, colleges, universities and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,800 colleges through major programs and services in college readiness, college admission, guidance, assessment, financial aid
and enrollment. Among its widely recognized programs are the SAT®, the PSAT/NMSQT®, the Advanced Placement Program®

(AP®), SpringBoard® and ACCUPLACER®. The College Board is committed to the principles of excellence and equity, and that
commitment is embodied in all of its programs, services, activities and concerns.

© 2010 The College Board. College Board, ACCUPLACER, Advanced Placement Program, AP, AP Central, SAT, SpringBoard
and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation Service is a trademark owned by
the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation.
All other products and services may be trademarks of their respective owners. Permission to use copyrighted College Board
materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

https://www.collegeboard.com
https://www.collegeboard.com/inquiry/cbpermit.html
https://apcentral.collegeboard.com

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

AP® COMPUTER SCIENCE A
2010 GENERAL SCORING GUIDELINES

Apply the question-specific rubric first. To maintain scoring intent, a single error is generally accounted for only once
per question thereby mitigating multiple penalties for the same error. The error categorization below is for cases not
adequately covered by the question-specific rubric. Note that points can only be deducted if the error occurs in a part that
has earned credit via the question-specific rubric. Any particular error is penalized only once in a question, even if it
occurs on different parts of that question.

Nonpenalized Errors

spelling/case discrepancies if no
ambiguity *

local variable not declared if others are
declared in some part

use keyword as identifier

[] vs. () vs. <>

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side effect;
e.g., precondition check

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent and { } used elsewhere

default constructor called without parens;
e.g., new Fish;

missing () on parameterless method call

missing () around if/while conditions

missing ; when majority are present

missing public on class or constructor
header

extraneous [] when referencing entire
array

extraneous size in array declaration,
e.g., int[size] nums = new int[size];

Minor Errors (1/2 point)

confused identifier (e.g., len for length
or left() for getLeft())

local variables used but none declared

missing new in constructor call

modifying a constant (final)

use equals or compareTo method on
primitives, e.g., int x; …x.equals(val)

array/collection access confusion ([] get)

assignment dyslexia,
e.g., x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean
values

"null" for null

Applying Minor Errors (½ point):
A minor error that occurs exactly
once when the same concept is
correct two or more times is
regarded as an oversight and not
penalized. A minor error must be
penalized if it is the only
instance, one of two, or occurs
two or more times.

Major Errors (1 point)

extraneous code that causes side effect;
e.g., information written to output

interface or class name instead of variable
identifier; e.g., Bug.move() instead of
aBug.move()

aMethod(obj) instead of
obj.aMethod()

attempt to use private data or method
when not accessible

destruction of persistent data (e.g.,
changing value referenced by parameter)

use class name in place of super in
constructor or method call

void method (or constructor) returns a
value

* Spelling and case discrepancies for identifiers fall under the “nonpenalized” category only if the correction can be unambiguously
inferred from context; for example, “ArayList” instead of “ArrayList”. As a counter example, note that if a student
declares “Bug bug;” then uses “Bug.move

()” instead of “bug.move()”, the context does not allow for the reader to

assume the object instead of the class.

AP® COMPUTER SCIENCE A

2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1: Master Order

Part (a) getTotalBoxes 3 points
Intent: Compute and return the sum of the number of boxes of all cookie orders in this.orders

 +1 Considers all CookieOrder objects in this.orders
 +1/2 Accesses any element of this.orders
 +1/2 Accesses all elements of this.orders with no out-of-bounds

access potential

+1 1/2 Computes total number of boxes
 +1/2 Creates an accumulator (declare and initialize)
 +1/2 Invokes getNumBoxes on object of type CookieOrder
 +1/2 Correctly accumulates total number of boxes

+1/2 Returns computed total

Part (b) removeVariety 6 points
Intent: Remove all CookieOrder objects from this.orders whose variety matches cookieVar;
return total number of boxes removed

 +4 Identifies and removes matching CookieOrder objects
 +1/2 Accesses an element of this.orders
 +1/2 Compares parameter cookieVar with getVariety() of a

CookieOrder object (must use .equals or .compareTo)

 +1 Compares parameter cookieVar with getVariety() of all

CookieOrder objects in this.orders, no out-of-bounds access potential

+1/2 Removes an element from this.orders
+1/2 Removes only matching CookieOrder objects

 +1 Removes all matching CookieOrder objects, no elements skipped

 +1 1/2 Computes total number of boxes in removed CookieOrder objects
 +1/2 Creates an accumulator (declare and initialize)
 +1/2 Invokes getNumBoxes on object of type CookieOrder
 +1/2 Correctly accumulates total number of boxes

(must be in context of loop and match with cookieVar)

 +1/2 Returns computed total

Usage:

–1 consistently references incorrect name instead of orders, of potentially correct type
–1 1/2 consistently references incorrect name instead of orders, incorrect type

(e.g., this, MasterOrder)

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 2: APLine

Intent: Design complete APLine class including constructor, getSlope and isOnLine methods

 +1 Complete, correct header for APLine [class APLine]

Note: Accept any visibility except private

 +1 1/2 State maintenance
 +1/2 Declares at least one instance variable capable of maintaining

numeric value

 +1/2 Declares at least three instance variables capable of maintaining

numeric values

 +1/2 All state variables have private visibility
 Note: Accept any numeric type (primitive or object)
 Note: Accept any distinct Java-valid variable names

 +1 1/2 APLine Constructor
 Method header
 +1/2 Correctly formed header (visibility not private; name APLine)
 +1/2 Specifies exactly three numeric parameters
 Method body
 +1/2 Sets appropriate state variables based on parameters (no shadowing errors)
 Note: Interpret instance fields by usage not by name

 +2 1/2 getSlope
 Method header
 +1/2 Correct method header
 (visibility not private; type double or Double; name getSlope; parameterless)
 Method body
 +1/2 Computation uses correct formula for slope
 +1 Computation uses double precision (no integer division)
 +1/2 Returns computed value

 +2 1/2 isOnLine
 Method header
 +1/2 Correct formed header (visibility not private; type boolean or

Boolean, name isOnLine)

 +1/2 Specifies exactly two numeric parameters
 Method body
 +1/2 Computation uses correct formula involving state and parameters
 (a*x + b*y + c)
 +1/2 Computation uses correct comparison test (equal to zero)
 +1/2 Returns true if is on this APLine; false otherwise

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 3: Trail

Part (a) isLevelTrailSegment 5 points
Intent: Return true if maximum difference ≤ 10 (segment is level); false otherwise

 +3 Determination of information needed to test level-trail condition
 +1/2 Creates and maintains local state for determination of maximum

(or minimum);

alternate solution: tests difference in elevations

+1/2 Accesses the value of any element of this.markers

 +1 All and only appropriate elements of this.markers participate in
determination of information needed to test level-trail condition;
no out-of-bounds access potential

 +1 Compares element to state in context of updating maximum

(or minimum);

alternate solution: tests difference in elevations

 +1 Correctly determines information needed to test level-trail condition for the

elements examined; must address two or more pairs of elements

 +1 Returns true if determined maximum difference is ≤ 10, false otherwise

Part (b) isDifficult 4 points
Intent: Return true if trail is difficult (based on number of changes of given magnitude); false otherwise

 +3 Determine number of changes, greater than or equal to 30, between consecutive

values in this.markers

+1/2 Creates, initializes and accumulates a count of number of changes
+1/2 Accesses the value of any element of this.markers in

context of iteration

+1/2 Accesses the value of all elements of this.markers,

no out-of-bounds access potential

+1/2 Computes difference of all and only consecutive values

in this.markers

+1 Updates accumulated count if and only if absolute value

of difference is >= 30

 +1 Returns true if accumulated count is >= 3; false otherwise

AP® COMPUTER SCIENCE A
2010 SCORING GUIDELINES

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4: GridChecker (GridWorld)

Part (a) actorWithMostNeighbors 4 points
Intent: Identify and return actor in this.gr with most neighbors; return null if no actors in grid

 +1 Consider all occupied locations or all actors in grid
 +1/2 Iterates over all occupied locations in this.gr
 +1/2 Performs action using actor or location from this.gr within iteration

 +1 1/2 Determination of maximum number of neighbors
 +1/2 Determines number of occupied neighboring locations* of a location
 +1 Correctly determines maximum number of neighbors

 +1 1/2

Return actor

 +1/2 Returns reference to Actor (not Location)
 +1 Returns reference to a correct actor; null if no actors in this.gr

*Note: This may be done using getOccupiedAdjacentLocations, getNeighbors, or an

iterative get of surrounding locations

Part (b) getOccupiedWithinTwo 5 points
Intent: Return list of all occupied locations within 2 rows/columns of parameter, parameter excluded

 +1/2 Creates and initializes local variable to hold collection of locations

 +2 Consider surrounding locations
 +1/2 Considers at least two locations 1 row and/or 1 column away from

parameter

 +1/2 Considers at least two locations 2 rows and/or 2 columns away from

parameter

 +1 Correctly identifies all and only valid locations within 2 rows and

2 columns of parameter

 +1 Collect occupied locations†
 +1/2 Adds any location object to collection
 +1/2 Adds location to collection only if occupied

 +1 1/2 Return list of locations
 +1/2 Returns reference to a list of locations
 +1/2 List contains all and only identified locations†
 +1/2 Parameter loc excluded from returned list

†Note: Duplication of locations in returned list is not penalized

Usage: –½ parameter dyslexia in new Location constructor invocation

AP® COMPUTER SCIENCE A

2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 1: Master Order

Part (a):

public int getTotalBoxes() {
 int sum = 0;
 for (CookieOrder co : this.orders) {
 sum += co.getNumBoxes();
 }
 return sum;
}

Part (b):

public int removeVariety(String cookieVar) {
 int numBoxesRemoved = 0;
 for (int i = this.orders.size() - 1; i >= 0; i--) {
 if (cookieVar.equals(this.orders.get(i).getVariety())) {
 numBoxesRemoved += this.orders.get(i).getNumBoxes();
 this.orders.remove(i);
 }
 }
 return numBoxesRemoved;
}

// Alternative solution (forward traversal direction):

public int removeVariety(String cookieVar) {
 int numBoxesRemoved = 0;
 int i = 0;
 while (i < this.orders.size()) {
 if (cookieVar.equals(this.orders.get(i).getVariety())) {
 numBoxesRemoved += this.orders.get(i).getNumBoxes();
 this.orders.remove(i);
 } else {
 i++;
 }
 }
 return numBoxesRemoved;
}

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 2: APLine

public class APLine {
 /** State variables. Any numeric type; object or primitive. */
 private int a, b, c;

 /** Constructor with 3 int parameters. */
 public APLine(int a, int b, int c) {
 this.a = a;
 this.b = b;
 this.c = c;
 }

 /** Determine the slope of this APLine. */
 public double getSlope() {
 return (- (this.a / (double) this.b));
 }

 /** Determine if coordinates represent a point on this APLine. */
 public boolean isOnLine(int x, int y) {
 return (0 == (this.a * x) + (this.b * y) + this.c);
 }
}

// Alternative solution (state variables of type double):

public class APLine {
 private double a1, b1, c1;

 public APLine(int a, int b, int c) {
 this.a1 = a;
 this.b1 = b;
 this.c1 = c;
 }

 public double getSlope() {
 return -(this.a1 / this.b1);
 }

 public boolean isOnLine(int x, int y) {
 return (0 == (this.a1 * x) + (this.b1 * y) + this.c1);
 }
}

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 3: Trail

Part (a):

public boolean isLevelTrailSegment(int start, int end) {
 int min = this.markers[start];
 int max = this.markers[start];
 for (int i = start + 1; i <= end; i++) {
 if (min > this.markers[i]) {
 min = this.markers[i];
 }
 if (max < this.markers[i]) {
 max = this.markers[i];
 }
 }
 return ((max - min) <= 10);
}

// Alternative solution (compares differences; uses early return):

public boolean isLevelTrailSegment(int start, int end) {
 for (int i = start; i < end; i++) {
 for (int j = start + 1; j <= end; j++) {
 if (Math.abs(this.markers[i] - this.markers[j]) > 10) {
 return false;
 }
 }
 }
 return true;
}

Part (b):

public boolean isDifficult() {
 int numChanges = 0;
 for (int i = 0; i < this.markers.length - 1; i++) {
 if (Math.abs(this.markers[i] - this.markers[i + 1]) >= 30) {
 numChanges++;
 }
 }
 return (numChanges >= 3);
}

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

Question 4: GridChecker (GridWorld)

Part (a):

public Actor actorWithMostNeighbors() {
 if (0 == this.gr.getOccupiedLocations().size()) {
 return null;
 }
 Location where = null;
 int most = -1;
 for (Location loc : this.gr.getOccupiedLocations()) {
 if (most < this.gr.getOccupiedAdjacentLocations(loc).size()) {
 most = this.gr.getOccupiedAdjacentLocations(loc).size();
 where = loc;
 }
 }
 return this.gr.get(where);
}

// Alternative solution (uses getNeighbors):

public Actor actorWithMostNeighbors() {
 if (0 == this.gr.getOccupiedLocations().size()) {
 return null;
 }
 Location where = this.gr.getOccupiedLocations().get(0);
 for (Location loc : this.gr.getOccupiedLocations()) {
 if (this.gr.getNeighbors(where).size() <
this.gr.getNeighbors(loc).size()) {
 where = loc;
 }
 }
 return this.gr.get(where);
}

AP® COMPUTER SCIENCE A
2010 CANONICAL SOLUTIONS

Question 4: GridChecker (GridWorld) (continued)

Part (b):

public List<Location> getOccupiedWithinTwo(Location loc) {
 List<Location> occupied = new ArrayList<Location>();
 for (int row = loc.getRow() - 2; row <= loc.getRow() + 2; row++) {
 for (int col = loc.getCol() - 2; col <= loc.getCol() + 2; col++) {
 Location loc1 = new Location(row, col);
 if (gr.isValid(loc1) && this.gr.get(loc1) != null &&
!loc1.equals(loc)) {
 occupied.add(loc1);
 }
 }
 }
 return occupied;
}

// Alternative solution (uses getOccupiedLocations):

public List<Location> getOccupiedWithinTwo(Location loc) {
 List<Location> occupied = new ArrayList<Location>();
 for (Location loc1 : this.gr.getOccupiedLocations()) {
 if ((Math.abs(loc.getRow() - loc1.getRow()) <= 2)
 && (Math.abs(loc.getCol() - loc1.getCol()) <= 2)
 && !loc1.equals(loc)) {
 occupied.add(loc1);
 }
 }
 return occupied;
}

These canonical solutions serve an expository role, depicting general approaches to a solution. Each reflects only one instance from the
infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.

© 2010 The College Board.
Visit the College Board on the Web: www.collegeboard.com.

https://www.collegeboard.com

	AP® Computer Science A 2010 Scoring Guidelines
	The College Board
	2010 GENERAL SCORING GUIDELINES
	Nonpenalized Errors
	Minor Errors (1/2 point)
	Major Errors (1 point)

	2010 SCORING GUIDELINES
	Question 1: Master Order
	Question 2: APLine
	Question 3: Trail
	Question 4: GridChecker (GridWorld)

	2010 CANONICAL SOLUTIONS
	Question 1: Master Order
	Question 2: APLine
	Question 3: Trail
	Question 4: GridChecker (GridWorld)

