## AP ${ }^{\oplus}$ CALCULUS BC 2010 SCORING GUIDELINES

Question 6

$$
f(x)= \begin{cases}\frac{\cos x-1}{x^{2}} & \text { for } x \neq 0 \\ -\frac{1}{2} & \text { for } x=0\end{cases}
$$

The function $f$, defined above, has derivatives of all orders. Let $g$ be the function defined by $g(x)=1+\int_{0}^{x} f(t) d t$.
(a) Write the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Use this series to write the first three nonzero terms and the general term of the Taylor series for $f$ about $x=0$.
(b) Use the Taylor series for $f$ about $x=0$ found in part (a) to determine whether $f$ has a relative maximum, relative minimum, or neither at $x=0$. Give a reason for your answer.
(c) Write the fifth-degree Taylor polynomial for $g$ about $x=0$.
(d) The Taylor series for $g$ about $x=0$, evaluated at $x=1$, is an alternating series with individual terms that decrease in absolute value to 0 . Use the third-degree Taylor polynomial for $g$ about $x=0$ to estimate the value of $g(1)$. Explain why this estimate differs from the actual value of $g(1)$ by less than $\frac{1}{6!}$.
(a) $\quad \cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots$
$f(x)=-\frac{1}{2}+\frac{x^{2}}{4!}-\frac{x^{4}}{6!}+\cdots+(-1)^{n+1} \frac{x^{2 n}}{(2 n+2)!}+\cdots$
(b) $f^{\prime}(0)$ is the coefficient of $x$ in the Taylor series for $f$ about $x=0$, so $f^{\prime}(0)=0$.
$\frac{f^{\prime \prime}(0)}{2!}=\frac{1}{4!}$ is the coefficient of $x^{2}$ in the Taylor series for $f$ about $x=0$, so $f^{\prime \prime}(0)=\frac{1}{12}$.
Therefore, by the Second Derivative Test, $f$ has a relative minimum at $x=0$.
(c) $P_{5}(x)=1-\frac{x}{2}+\frac{x^{3}}{3 \cdot 4!}-\frac{x^{5}}{5 \cdot 6!}$
(d) $g(1) \approx 1-\frac{1}{2}+\frac{1}{3 \cdot 4!}=\frac{37}{72}$

Since the Taylor series for $g$ about $x=0$ evaluated at $x=1$ is alternating and the terms decrease in absolute value to 0 , we know $\left|g(1)-\frac{37}{72}\right|<\frac{1}{5 \cdot 6!}<\frac{1}{6!}$.
$3:\left\{\begin{array}{l}1: \text { terms for } \cos x \\ 2: \text { terms for } f \\ 1: \text { first three terms } \\ 1: \text { general term }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { determines } f^{\prime}(0) \\ 1: \text { answer with reason }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { two correct terms } \\ 1: \text { remaining terms }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { estimate } \\ 1: \text { explanation }\end{array}\right.$

Work for problem 6(a)

$$
\begin{aligned}
& \cos x=\sum_{n=0}^{N} \frac{(-1)^{n}(x)^{2 n}}{(2 n)!} \\
& \text { First twee vonurstern. }=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \\
& \text { goursi theron: } \frac{(-1)^{n}(x)^{2 n}}{(2 n)!} \\
& f(x)=\frac{0 \cos y-1}{y^{2}}, y 0 \\
& \text { First nonzero terms }=-\frac{1}{2!}+\frac{x^{2}}{4!}-\frac{x^{4}}{6!} \\
& \text { general term }=\frac{(-1)^{n+1}(x)^{2 n}}{(2 n+2)!}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=\frac{2}{4!}-\frac{12 x^{2}}{6!}+\ldots \\
& f^{\prime \prime}(0)=\frac{2}{4!}>0
\end{aligned}
$$

$\therefore$ I relative min art $x=0$ by the seems
Survive ter

$$
\begin{aligned}
& \sum_{n=0} \frac{f^{n}(0)}{n!}(x)^{n} \\
& g(x) \approx P_{5}(x)=1-\frac{1}{2} x+\frac{\theta}{4!3!} x^{3}-\frac{2!}{6!5!} x^{5} \\
& g(0)=1 \\
& g^{\prime}(0)=-\frac{1}{2} \quad g^{\prime}(x)=f(x) \\
& g^{\prime \prime}(0)=0 \quad g^{\prime \prime}(x)=F^{\prime}(x) \\
& g^{\prime \prime \prime}(0)=\frac{2}{4!} \quad g^{\prime \prime \prime}(x)=f^{\prime \prime}(x) \\
& \text { 部 } g^{4}(0)=0 \quad g^{\prime \prime}(x)=f^{\prime \prime}(x)=\frac{-24 x}{6!}+\ldots \\
& g^{5}(0)=\frac{-24}{6!} \quad g^{c}(x): f^{\prime \prime}(x)=\frac{-24}{6!} \\
& \text { Work for problem 6(d) } \\
& g(x) \approx P_{3}(x)=1-\frac{1}{2} x+\frac{2}{1!3!} x^{3} \\
& R_{3}(x)=\frac{24}{6!5!} y^{5} \\
& g(1) \approx P_{3}(1)=1-\frac{1}{2}(1)+\frac{2}{4!3!}(1)^{3} \\
& 1-\frac{1}{2}+\frac{2}{4 \cdot 3:} \quad \frac{24}{124} \\
& R_{3}(1)=\frac{24}{6!5!} \\
& \frac{\frac{1}{2}+\frac{2}{144}}{\frac{74}{144}}
\end{aligned}
$$



$$
F(x)=-\frac{1}{2!}+\frac{x^{2}}{4!}-\frac{x^{4}}{4!}
$$

$$
\begin{gathered}
F^{\prime}(0)=0 \\
f^{\prime \prime}(d)=\frac{2}{4!}-\frac{12 x^{2}}{6!}
\end{gathered}
$$

$$
F^{\prime \prime}(0)=\frac{1}{12}>0
$$

at $x=0 \quad f(x)$ is at a minimum $b$ : second derivative test.

Work for problem 6(c) $g(x)=1+\int_{0}^{K} f(\theta) d$

$$
=1-\frac{x}{2!}+\frac{x^{3}}{(3)(4!)}-\frac{x^{5}}{(6!)(5)}
$$

Work for problem $6(\mathrm{~d}) \quad g(0) \sim 1-\frac{1}{2}+\frac{1}{3(91)}$
$\rightarrow$ to get error take next term and ply g in 0 on $=1$

$$
\rightarrow \quad\left|-\frac{1^{5}}{(6!)(5)}\right|<\frac{1}{6!}
$$

this Method, of evaluating next tern to find, error, work because $g$ about $x=0$ and evaluated at $y=1$ is an alternating series w/ terms that iecreace in dissolute value to 0 :

$$
8
$$ - $O_{1}$

Work for problem 6(a)

$$
\begin{aligned}
& \cos x \Rightarrow \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}: 1-\frac{x^{2}}{2!}+\frac{x^{3}}{4!}-\frac{x^{6}}{6!} \cdots(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
& \begin{aligned}
& f(x)=\frac{\cos x-1}{x^{2}}:\left(1-\frac{x^{2}}{2!}+\frac{x^{x^{2}}}{4!}-\frac{x^{64}}{6!} \cdots \frac{x^{2 n}}{(2 n)!}\right) \\
&=-\frac{1}{2!}+\frac{x^{2}}{4!}-\frac{x^{4}}{10!} \cdots \frac{(-1)^{n+1} x^{2 n}}{(2 n)!}
\end{aligned}
\end{aligned}
$$

Work for problem 6(b)

$$
f^{\prime}(0)=0
$$

The Taylor series for $f$ about $x=0$

$$
f^{\prime \prime}(0)=\frac{(-1)^{4+1} b^{2 n}}{(2.4)^{\prime}}
$$

66
$6 \quad 6$
(a)
NO CALCULATOR ALLOWED
$6 \quad 6$
$6 C_{2}$
Work for problem $6(c)$

# AP ${ }^{\circledR}$ CALCULUS BC 2010 SCORING COMMENTARY 

## Question 6

## Overview

This problem provided the function $f$ defined by $f(x)=\frac{\cos x-1}{x^{2}}$ for $x \neq 0$ and $f(0)=-\frac{1}{2}$. It was given that $f$ has derivatives of all orders, and the function $g$ is defined by $g(x)=1+\int_{0}^{x} f(t) d t$. Part (a) asked for the first three nonzero terms and the general term of the Taylor series for $\cos x$ about $x=0$. Students were to use this with algebraic manipulation to find the first three nonzero terms and the general term of the Taylor series for $f$ about $x=0$. In part (b) students were asked to use the Taylor series for $f$ about $x=0$ to determine whether $f$ has a relative maximum, relative minimum or neither at $x=0$. From the series for $f$ students can establish that $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=\frac{1}{4 \cdot 3}$ and resolve this issue using the Second Derivative Test. Part (c) asked for the fifthdegree Taylor polynomial for $g$ about $x=0$. In part (d) it was given that the Taylor series for $g$ about $x=0$ is an alternating series whose terms decrease in absolute value to 0 . Students were asked to use the third-degree Taylor polynomial for $g$ about $x=0$ to estimate $g(1)$ and to explain why this estimate is within $\frac{1}{6!}$ of the actual value. The properties of the series for $g(1)$ allow us to bound the error in this approximation by the absolute value of the next term in the series.

## Sample: 6A

## Score: 9

The student earned all 9 points.

## Sample: 6B

## Score: 6

The student earned 6 points: 1 point in part (a), 1 point in part (b), 2 points in part (c), and 2 points in part (d). In part (a) the student earned the second point. Although the first three terms for the series for $\cos x$ are correct, the student omits the general term. The first three terms of the series for $f$ are correct, but the student also omits the general term. The student did not lose any points for the use of " $=$ " in both cases. In part (b) the student incorrectly declares $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ to be polynomials and provides a correct solution without dealing with a series. The student earned just 1 point as a result. In parts (c) and (d), the student's work is correct. The student did not lose any points for an incorrect use of the equals sign in part (c).

## Sample: 6C <br> Score: 4

The student earned 4 points: 2 points in part (a), 1 point in part (b), 1 point in part (c), and no points in part (d). In part (a) the student earned the first point for the first three terms and the general term of the series for $\cos x$. The first three terms of the series for $f$ are correct, but the general term is incorrect. The student earned 1 of the possible points for the series for $f$. In part (b) the student earned the first point for determining $f^{\prime}(0)$. In part (c) the student earned 1 point for the correct first two terms. In part (d) the student's work is incorrect.

