AP ${ }^{\circledR}$ CALCULUS BC 2010 SCORING GUIDELINES

Question 1

There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t)=7 t e^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. $(t=6)$. The rate $g(t)$, in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by

$$
g(t)= \begin{cases}0 & \text { for } 0 \leq t<6 \\ 125 & \text { for } 6 \leq t<7 \\ 108 & \text { for } 7 \leq t \leq 9\end{cases}
$$

(a) How many cubic feet of snow have accumulated on the driveway by 6 A.m.?
(b) Find the rate of change of the volume of snow on the driveway at 8 A.m.
(c) Let $h(t)$ represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain $0 \leq t \leq 9$.
(d) How many cubic feet of snow are on the driveway at 9 A.M.?
(a) $\int_{0}^{6} f(t) d t=142.274$ or 142.275 cubic feet
(b) Rate of change is $f(8)-g(8)=-59.582$ or -59.583 cubic feet per hour.
(c) $h(0)=0$

For $0<t \leq 6, h(t)=h(0)+\int_{0}^{t} g(s) d s=0+\int_{0}^{t} 0 d s=0$.
For $6<t \leq 7, h(t)=h(6)+\int_{6}^{t} g(s) d s=0+\int_{6}^{t} 125 d s=125(t-6)$.
For $7<t \leq 9, h(t)=h(7)+\int_{7}^{t} g(s) d s=125+\int_{7}^{t} 108 d s=125+108(t-7)$.

Thus, $h(t)= \begin{cases}0 & \text { for } 0 \leq t \leq 6 \\ 125(t-6) & \text { for } 6<t \leq 7 \\ 125+108(t-7) & \text { for } 7<t \leq 9\end{cases}$
(d) Amount of snow is $\int_{0}^{9} f(t) d t-h(9)=26.334$ or 26.335 cubic feet.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$

1 : answer
$3:\left\{\begin{array}{l}1: h(t) \text { for } 0 \leq t \leq 6 \\ 1: h(t) \text { for } 6<t \leq 7 \\ 1: h(t) \text { for } 7<t \leq 9\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { integral } \\ 1: h(9) \\ 1: \text { answer }\end{array}\right.$

CALCULUS AB

SECTION II，Part A
Time－45 minutes
$\mid A_{1}$
Number of problems－3

A graphing calculator is required for some problems or parts of problems．

$$
\begin{gathered}
\text { Work for problem 1(a) } \\
\int_{0}^{6} f(t) d t \\
\int_{0}^{6} 7 t e^{\cos t} d t \\
=142,275 f t^{3} \\
\text { Work for problem 1(b) } \\
f(t)-g(t) \\
7 t e^{\operatorname{cost}-108} \quad \text { ot } 8 \text { am } \\
7(8) e^{\cos 8}-108
\end{gathered}
$$

Work for problem 1 (c)

$$
h(t)=\left\{\begin{array}{c}
0 \text { for } 0 \leq t \leq 6 \\
125(t-6) \text { for } 6<t \leq 7 \\
108(t-7)+125 \text { for } 7<t \leq 9
\end{array}\right.
$$

Work for problem 1(d)

$$
\begin{aligned}
& \int_{0}^{9} f(t) d t-\int_{0}^{9} g(t) d t \\
& \int_{0}^{9} 7 t e^{c t} d t-\left.h(t)\right|_{0} ^{9} \\
& 367.334-(125+216) \\
& =26.334 \mathrm{ft}^{3} \text { of snow are on the drivecuay } \\
& \text { at } 9 \mathrm{am} \text {. }
\end{aligned}
$$

CALCULUS BC
SECTION II, Part A
Time- 45 minutes
Number of problems- 3
A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)
Rate of accumalahon of show $=7 t e^{\cos t}$
Accumcíation at GA,M $=\int_{0}^{6}\left(7 t e^{\cos t}\right) d t$

$$
\approx 142.275 \quad \mathrm{ft}^{3}
$$

Work for problem 1(b)

$$
\begin{aligned}
& \text { volume of snow at } 8 A \cdot m=7 t e^{\cos t}-108 \\
& \frac{d v}{d t}=(7 t)\left(e^{\cos t} \cdot-\sin t\right)+(7)\left(e^{\cos t}\right) \\
& \frac{d V}{d t}=7 t\left(-e^{\cos t} \sin t\right)+7 e^{\cos t} \\
& \frac{d V}{d t}=-7 t e^{\cos t} \sin t+7 e^{\cos t}
\end{aligned}
$$

At $t=8, \frac{d V}{d t} \approx-41.8496 \mathrm{ft}^{3} / \mathrm{hr}$

Work for problem 1(c)

$$
n(t)= \begin{cases}0 & \text { for } 0 \leq t \in 6 \\ 125 t \text { for } 6 \leq t c 7 \\ 108 t \text { for } 7 \leq t \leq 9\end{cases}
$$

Work for problem i 1 (d)
Total amount of snow facluing from $0 \leq t \leq 9$

$$
=\int_{0}^{9}\left(7 t e^{\cos t}\right) d t \approx 367.33461 \mathrm{ft}^{3}
$$

From $\leq \leq \pm<7$, Janet removed:

$$
\int_{0}^{7} 125 d t=125 \mathrm{ft}^{3}
$$

From $7 \leq t \leq 9$, Janet renored

$$
\int_{7}^{9} 108 d t=216 \mathrm{ft}^{3}
$$

So, at $t=9$, total snow $=(367.33461)-(125)-(216) \approx 26.335 \mathrm{ft}^{3}$

CALCULUS AB
SECTION II, Part A
Time-45 minutes
Number of problems- 3
A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)

$$
\begin{aligned}
& f(t)=7 t e^{\cos t} \\
& \int_{0}^{6}\left(7 t e^{\cos t}\right) d t=.142 .275 \mathrm{~T}^{3}
\end{aligned}
$$

Work for problem 1(b)

$$
\begin{aligned}
f(\delta) & =7(\delta) e^{\cos \delta} \\
& =48.417 \mathrm{ft}^{2} / \mathrm{h}
\end{aligned}
$$

Work for problem 1(c)

$$
\begin{array}{r}
\int_{6}^{7} 125 d t=125 \\
\int_{7}^{9} 108 d t=216 \\
h(t)\left\{\begin{array}{cc}
0, & 0 \leq t<6 \\
125, & 6 \leq t<7 \\
216, & 7 \leq t \leq 9
\end{array}\right.
\end{array}
$$

Work for problem Id)

$$
\int_{0}^{9}\left(7 t e^{\cos t}\right) d t=367.335 \mathrm{ft}^{2}
$$

AP ${ }^{\circledR}$ CALCULUS BC 2010 SCORING COMMENTARY

Question 1

Overview

This problem supplied two rate functions related to the amount of snow on Janet's driveway during a nine-hour period. One function f, given by $f(t)=7 t e^{\cos t}$, measured in cubic feet per hour, models the rate of accumulation on the driveway for t between 0 and 9 hours after midnight. A second function, g, is a step function that gives the rate at which Janet removes snow from the driveway during this period. For part (a) students needed to use the definite integral $\int_{0}^{6} f(t) d t$ to calculate the accumulation of snow on the driveway by 6 A.M. - integrating the rate of accumulation of snow over a time interval gives the net accumulation of snow during that time period. Part (b) asked for the rate of change of the volume of snow on the driveway at 8 A.m.; students needed to recognize this as the difference $f(8)-g(8)$ between the rate of accumulation and the rate of removal at time $t=8$. Part (c) asked the students to recover a function h measuring the total amount of snow removed from the driveway for t between 0 and 9 hours after midnight. Students needed to integrate to obtain a piecewise-linear expression for h from the step function g. Part (d) asked for the amount of snow on the driveway at 9 A.M., which required students to compute the difference of two integrals, $\int_{0}^{9} f(t) d t-\int_{0}^{9} g(t) d t$.

Sample: 1A

Score: 9
The student earned all 9 points.

Sample: 1B
 Score: 6

The student earned 6 points: 2 points in part (a), no points in part (b), 1 point in part (c), and 3 points in part (d). In part (a) the student's work is correct. In part (b) the student works with f^{\prime}, rather than f and g. The student's numeric answer is incorrect. In part (c) the student earned the first point for correctly identifying $h(t)=0$ on the interval from 0 to 6 . The second point was not earned since the student reports that the linear expression is $125 t$. The student does not use the initial condition that $h(7)=125$ and does not horizontally translate the linear expression, so the third point was not earned. In part (d) the student's work is correct.

Sample: 1C
 Score: 4

The student earned 4 points: 2 points in part (a), no points in part (b), 1 point in part (c), and 1 point in part (d). In part (a) the student's work is correct. In part (b) the student does not subtract $g(8)$ from the evaluation of $f(8)$. In part (c) the student earned the first point for correctly identifying $h(t)=0$ on the interval from 0 to 6 . The student presents constant functions for the other intervals and did not earn the other two points. In part (d) the student earned the point for the correct integral expression.

