AP ${ }^{\circledR}$ CALCULUS AB 2010 SCORING GUIDELINES

Question 5

Graph of g^{\prime}
The function g is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the x-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.
(c) The function h is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the x-coordinate of each critical point of h, where $-7<x<5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.
(a) $g(3)=5+\int_{0}^{3} g^{\prime}(x) d x=5+\frac{\pi \cdot 2^{2}}{4}+\frac{3}{2}=\frac{13}{2}+\pi$
$g(-2)=5+\int_{0}^{-2} g^{\prime}(x) d x=5-\pi$
(b) The graph of $y=g(x)$ has points of inflection at $x=0, x=2$, and $x=3$ because g^{\prime} changes from increasing to decreasing at $x=0$ and $x=3$, and g^{\prime} changes from decreasing to increasing at $x=2$.
(c) $h^{\prime}(x)=g^{\prime}(x)-x=0 \Rightarrow g^{\prime}(x)=x$

On the interval $-2 \leq x \leq 2, g^{\prime}(x)=\sqrt{4-x^{2}}$.
On this interval, $g^{\prime}(x)=x$ when $x=\sqrt{2}$.
The only other solution to $g^{\prime}(x)=x$ is $x=3$.
$h^{\prime}(x)=g^{\prime}(x)-x>0$ for $0 \leq x<\sqrt{2}$
$h^{\prime}(x)=g^{\prime}(x)-x \leq 0$ for $\sqrt{2}<x \leq 5$
Therefore h has a relative maximum at $x=\sqrt{2}$, and h has neither a minimum nor a maximum at $x=3$.
$3:\left\{\begin{array}{l}1: \text { uses } g(0)=5 \\ 1: g(3) \\ 1: g(-2)\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { identifies } x=0,2,3 \\ 1: \text { explanation }\end{array}\right.$
$4:\left\{\begin{array}{l}1: h^{\prime}(x) \\ 1: \text { identifies } x=\sqrt{2}, 3 \\ 1: \text { answer for } \sqrt{2} \text { with analysis } \\ 1: \text { answer for } 3 \text { with analysis }\end{array}\right.$

$$
x=0,2,3
$$

$g^{\prime}(x)$ switches from increasing to decreasing or from decreasing to increasing at these three x-values.

Work for problem 5(c)

$$
\begin{aligned}
& h(x)=g(x)-\frac{1}{2} x^{2} \\
& h^{\prime}(x)=g^{\prime}(x)-x
\end{aligned}
$$

Where $h^{\prime}(x)=0 \ldots$

$$
\begin{aligned}
& g^{\prime}(x)-x=0 \\
& g^{\prime}(x)=x \\
& x=\sqrt{2}, 3
\end{aligned}
$$

$x=\sqrt{2}$ is a relative maximum for $h(x)$ becave $h^{\prime}(x)$ switches from positive to negative at this point.
$x=3$ is not a relative extremum for $h(x)$ because $h^{\prime}(x)$ does not switch signs.

$5 \longdiv { 5 } \quad 5 \underset { \frac { 5 } { \text { NOCALCULATORALLOWED } } } { 5 }$

Work for problem 5(b)

$$
\begin{aligned}
& g^{\prime \prime}(x)=0 @ x=0 \\
& g^{\prime \prime}(x)=\text { NE } x=2, x=3, x=-2
\end{aligned}
$$

g has a pt of inflection @ $x=0, x=2, x=3 \mathrm{~b} / \mathrm{c} g^{\prime}$ goes from inc to dec or vice versa, at those pts.

$$
h^{\prime}(x)=g^{\prime}(x)-\dot{x}
$$

$$
0=g^{\prime}(x)-x
$$

$$
n^{\prime}(x)=0 @ x=3
$$

h has a cortical pt $\omega x=3$. At $x=3$ h has a rel. max bile h^{\prime} goes from pos to neg at that pl.

Work for problem 5(a)

$$
\begin{aligned}
& g(3)=5+\int_{0}^{3} g^{\prime}(x) d x \\
& 5+\left(\frac{1}{2} \cdot 3 \cdot 1\right)+\frac{1}{4} \pi 2^{2} \\
& g(3)=5+\frac{3}{2}+\pi \\
& g(-2)=5-\int_{-2}^{0} g^{\prime}(x) d x \\
& \pi+\left(7 \cdot 1 \cdot \frac{1}{2}\right) \\
& g(-2)=5-\frac{7}{2}+\pi
\end{aligned}
$$

Work for problem 5(b)
point of int. when $g^{\prime \prime}$ has a zero o when g^{\prime} charges sigh
g^{\prime} changes sign at $x=0, x=2$ and $x=3$
$\therefore g$ has a point of inf. at $x=0, x=2$

Work for problem 5(c)
conical pt when $h^{\prime}(t)=0$

$$
n^{\prime}(x)=g^{\prime}(x)-x
$$

cortical point at $x=3$

\therefore there is a rel max wren $x=3$

AP ${ }^{\oplus}$ CALCULUS AB 2010 SCORING COMMENTARY

Question 5

Overview

This problem described a function g that is defined and differentiable on $[-7,5]$ and with $g(0)=5$. The graph of $y=g^{\prime}(x)$ on $[-7,5]$ was given, consisting of three line segments and a semicircle. Part (a) asked for values of $g(3)$ and $g(-2)$. These values are given by $5+\int_{0}^{3} g^{\prime}(x) d x$ and $5+\int_{0}^{-2} g^{\prime}(x) d x$, respectively, with the definite integrals computed using geometry and properties of definite integrals. Part (b) asked for the x coordinates of points of inflection for the graph of $y=g(x)$ on the interval $-7<x<5$. Students needed to reason graphically that these occur where the graph of g^{\prime} changes from increasing to decreasing or vice versa. Part (c) introduced a new function $h(x)=g(x)-\frac{1}{2} x^{2}$ and asked for x-coordinates of critical points of h and for the classification of each critical point as the location of a relative minimum, relative maximum or neither. Students needed to find that $h^{\prime}(x)=g^{\prime}(x)-x$ in order to determine the x-coordinates of critical points and apply a sign analysis of h^{\prime} to classify these critical points.

Sample: 5A
 Score: 9

The student earned all 9 points.

Sample: 5B
 Score: 6

The student earned 6 points: 3 points in part (a), 2 points in part (b), and 1 point in part (c). In parts (a) and (b), the student's work is correct. In part (c) the student earned the first point for correctly computing $h^{\prime}(x)$. Since $x=\sqrt{2}$ is never identified, the student did not earn the second and third points. The fourth point was not earned since the student attempts to justify that $x=3$ is the x-coordinate of a relative maximum.

Sample: 5C

Score: 4

The student earned 4 points: 2 points in part (a), 1 point in part (b), and 1 point in part (c). In part (a) the student earned the first 2 points for correctly using $g(0)=5$ and computing $g(3)$. The third point was not earned since the value for $g(-2)$ is incorrect. In part (b) the student earned the first point for correctly identifying all three x-coordinates of the points of inflection. The student's statement that " g^{\prime} changes sign" is not a justification for a point of inflection, so the second point was not earned. In part (c) the student earned the first point for correctly computing $h^{\prime}(x)$. Since $x=\sqrt{2}$ is never identified, the student did not earn the second and third points. The fourth point was not earned since the student attempts to justify that $x=3$ is the x-coordinate of a relative maximum.

