AP ${ }^{\circledR}$ CALCULUS AB
 2009 SCORING GUIDELINES (Form B)

Question 6

t (seconds)	0	8	20	25	32	40
$v(t)$ (meters per second)	3	5	-10	-8	-4	7

The velocity of a particle moving along the x-axis is modeled by a differentiable function v, where the position x is measured in meters, and time t is measured in seconds. Selected values of $v(t)$ are given in the table above. The particle is at position $x=7$ meters when $t=0$ seconds.
(a) Estimate the acceleration of the particle at $t=36$ seconds. Show the computations that lead to your answer. Indicate units of measure.
(b) Using correct units, explain the meaning of $\int_{20}^{40} v(t) d t$ in the context of this problem. Use a trapezoidal sum with the three subintervals indicated by the data in the table to approximate $\int_{20}^{40} v(t) d t$.
(c) For $0 \leq t \leq 40$, must the particle change direction in any of the subintervals indicated by the data in the table? If so, identify the subintervals and explain your reasoning. If not, explain why not.
(d) Suppose that the acceleration of the particle is positive for $0<t<8$ seconds. Explain why the position of the particle at $t=8$ seconds must be greater than $x=30$ meters.
(a) $a(36)=v^{\prime}(36) \approx \frac{v(40)-v(32)}{40-32}=\frac{11}{8}$ meters $/ \mathrm{sec}^{2}$
(b) $\int_{20}^{40} v(t) d t$ is the particle's change in position in meters from time $t=20$ seconds to time $t=40$ seconds.

$$
\begin{aligned}
\int_{20}^{40} v(t) d t & \approx \frac{v(20)+v(25)}{2} \cdot 5+\frac{v(25)+v(32)}{2} \cdot 7+\frac{v(32)+v(40)}{2} \cdot 8 \\
& =-75 \text { meters }
\end{aligned}
$$

(c) $v(8)>0$ and $v(20)<0$
$v(32)<0$ and $v(40)>0$
Therefore, the particle changes direction in the intervals
$8<t<20$ and $32<t<40$.
(d) Since $v^{\prime}(t)=a(t)>0$ for $0<t<8, v(t) \geq 3$ on this interval.

Therefore, $x(8)=x(0)+\int_{0}^{8} v(t) d t \geq 7+8 \cdot 3>30$.

1 : units in (a) and (b)
1 : answer
$3:\left\{\begin{array}{l}1: \text { meaning of } \int_{20}^{40} v(t) d t \\ 2: \text { trapezoidal } \\ \text { approximation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { explanation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: v^{\prime}(t)=a(t) \\ 1: \text { explanation of } x(8)>30\end{array}\right.$

t (seconds)	0	8	20	25	32	40
$v(t)$ (meters per second)	3	5	-10	-8	-4	7

Work for problem 6(a)

$$
\begin{aligned}
a(36) & \simeq \frac{v(40)-v(32)}{40-32} \\
& =\frac{7-(-4)}{8}=\frac{11}{8} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Work for problem 6(b)

$$
\begin{aligned}
\int_{20}^{40} v(t) d t & \simeq 5\left(\frac{-8+(-10)}{2}\right)+7\left(\frac{-4+(-8)}{2}\right)+8\left(\frac{7+c-4}{2}\right) \\
& =5(-9)+7(-6)+8\left(\frac{3}{2}\right) \\
& =-45-42+12=-75 \text { meters total, not nett }
\end{aligned}
$$

$\int_{20}^{40} v(t) d t$ is the total displacement of the particle from $t=20$ seconds to $t=40$ seconds

Since $v(t)$ is differentiable, $v(t)$ is continuous.
Partide changes direction $\rightarrow v(t)$ changes sign.
The partide must change direction in
$(8,20)$ and in $(32,40)$.
$\left\{\begin{array}{l}v(8)=5>0 \\ v(20)=-10<0\} v(t)\end{array} \frac{\text { changes sign }}{v(t)=0 \text { at some for } 8<c<20}\right.$
 The above is the dup do Intermediate Valve Theorem. since $v(t)$ changes sign a in $(8,20)$ and in $(32,40)$, the particle must change direction in $(8,20)$ and in (32, 40$)$ Work for problem 6 (d)
$a(t)>0$ for $o<t<8$ seconds.
Thus, $v(t)$ is increasing for $0<t<8$ seconds. Since $v(0)=3 \mathrm{~m} / \mathrm{s}$, and $v(t)>0$ on octcs,
absolute minimum of $v(t)$ on $0<t<8$ is $3 \mathrm{~m} / \mathrm{s}$. At $3 \mathrm{~m} / \mathrm{s}, 1$ minim distance travelled from $t=0$ to $t=8$ is $\int_{0}^{8} v(t) d t=\int_{0}^{8} 3 d t=3 \times 8=24$. metres.

$$
x(8)=x(0)+\int_{0}^{8} v(t) d t .=7+\int_{0}^{8} v(t) d t
$$

Since, $S_{0}^{8} v(t) d t \geqslant 24$ metres, $x(8) \geqslant 31$ metres and 3172. Thus; position of particle at $t=8$ seconds must be greater than $x=30$ metre $x=30$ metres

NO CALCULATOR ALLOWED

t (seconds)	0	8	20	25	32	40
$v(t)$ (meters per second)	3	5	-10	-8	-4	7

Work for problem 6(a)

$$
a(36)=\frac{V(40)-V(32)}{}=\frac{11}{8} \text { meters per second } \text { Squat }
$$ Square $40-32$

Work for problem 6(b)

$$
\begin{array}{r}
\frac{k(20)+4(25)}{2}(25-20)+\frac{L(25)+L(32)}{2}(22-25 \\
+\frac{L(40)+L(32)}{2}(40-32 \\
+\frac{-10-8}{2} \cdot 5+\frac{-8-4}{2} \cdot 7+\frac{-4+7}{2} \cdot 8=-75 \mathrm{~m}
\end{array}
$$

This is the distance that the paricicle traveled during $20<t<40$. which is 75 m left.

Work for problem 6(c)
Yes. in $8<t<10$ and $32<t<40$
Because the velocity changes from pristine to negative during those sibintervals.

Work for problem 6(d)
Because the a cceloration of the particle is postie for $0<t<8$, so the velocity of the particle must be increasing from $t=0$ to $t=\gamma$, from $3 \mathrm{~m} / \mathrm{s}$ to $5 \mathrm{~m} / \mathrm{s}$.
Suppose the velocity is $3 \mathrm{~m} / \mathrm{s}$, after 8 seconds. The particle will travel 24 meters.
24 meters plus the ital 7 meters is 31 meters. So, by wing the slowest of velocity, the car still can travel more than 30 meters.

NO CALCULATOR ALLOWED

t (seconds)	0	8	20	25	32	40
$v(t)$ (meters per second)	3	5	-10	-8	-4	7

Work for problem 6(a)
By the Mean Value Theorem:

$$
a(36)=\frac{V(40)-V(32)}{40-32}=\frac{11}{8}\left(\text { meters } / \text { seconds }^{2}\right)
$$

Work for problem 6(b)
$\int_{2}^{\text {up }} v(t) \cdot d t$ shows us the arevall sum at changes of $v(t$) during 20 seconds from $t=20$ fo $t=40$.

$$
\int_{w_{0}}^{u_{0}} v(t) d z(9 \cdot 5+6 \cdot 7+8 \cdot 9)=45+42+72=159
$$

Yes, It must change the direction on he given intervals $t \in(8 ; 20)$ and $t \in(32: 40)$, because velocity changes its sigh on these. intervals.
$V(t)$ is also positive, peretove, $V(t)$ is increasing, to $0<t=8850$ and

$$
X(f)=X(0)+\int_{0}^{0}(v(t) \cdot d t) ; X(0)=7, \int_{0}^{8} v(t) \cdot d t \text { is }
$$

move than 23 (32 , tom instance, using trapezoidal vale),
so, $X(8)>30$ meters

AP ${ }^{\circledR}$ CALCULUS AB
 2009 SCORING COMMENTARY (Form B)

Question 6

Sample: 6A

Score: 9

The student earned all 9 points. Note that in part (b) students could include units in either the numerical answer or the verbal description. The student's use of "total" is not necessary.

Sample: 6B

Score: 6

The student earned 6 points: the units point, 1 point in part (a), 2 points in part (b), no points in part (c), and 2 points in part (d). In part (a) the student's answer is correct. The use of an equality sign instead of an approximation symbol was ignored. In part (b) the student did not earn the point for the meaning of the definite integral, because the response uses "distance" instead of net distance. The student earned 2 points for the trapezoidal approximation; the use of L instead of v was ignored. In part (c) the student has only one correct interval, and the justification is inconsistent with that correct interval. The student was eligible for a point only if the justification matched the correct interval. In part (d) the student's work is correct. The verbal argument notes that the velocity is increasing, implies that $v(t) \geq 3$ on the interval, and argues from the initial position plus distance traveled.

Sample: 6C
Score: 4

The student earned 4 points: no units point, 1 point in part (a), no points in part (b), 2 points in part (c), and 1 point in part (d). In part (a) the student's work is correct. In part (b) the student does not include units and is not using a trapezoidal approximation. In part (c) the student's work is correct. The student was not required to describe the nature of the sign changes in $v(t)$. In part (d) the student earned the first point. There is no valid explanation as to why the definite integral is more than 23 . The student needs to appeal to the fact that $v(t) \geq 3$ for $0<t<8$.

