AP ${ }^{\circledR}$ CALCULUS AB 2009 SCORING GUIDELINES (Form B)

Question 1

At a certain height, a tree trunk has a circular cross section. The radius $R(t)$ of that cross section grows at a rate modeled by the function

$$
\frac{d R}{d t}=\frac{1}{16}\left(3+\sin \left(t^{2}\right)\right) \text { centimeters per year }
$$

for $0 \leq t \leq 3$, where time t is measured in years. At time $t=0$, the radius is 6 centimeters. The area of the cross section at time t is denoted by $A(t)$.
(a) Write an expression, involving an integral, for the radius $R(t)$ for $0 \leq t \leq 3$. Use your expression to find $R(3)$.
(b) Find the rate at which the cross-sectional area $A(t)$ is increasing at time $t=3$ years. Indicate units of measure.
(c) Evaluate $\int_{0}^{3} A^{\prime}(t) d t$. Using appropriate units, interpret the meaning of that integral in terms of crosssectional area.
(a) $R(t)=6+\int_{0}^{t} \frac{1}{16}\left(3+\sin \left(x^{2}\right)\right) d x$ $R(3)=6.610$ or 6.611
(b) $\quad A(t)=\pi(R(t))^{2}$
$A^{\prime}(t)=2 \pi R(t) R^{\prime}(t)$
$A^{\prime}(3)=8.858 \mathrm{~cm}^{2} /$ year
(c) $\int_{0}^{3} A^{\prime}(t) d t=A(3)-A(0)=24.200$ or 24.201

From time $t=0$ to $t=3$ years, the crosssectional area grows by 24.201 square centimeters.
$3:\left\{\begin{array}{l}1: \text { expression for } A(t) \\ 1: \text { expression for } A^{\prime}(t) \\ 1: \text { answer with units }\end{array}\right.$
$3:\left\{\begin{array}{l}1 \text { : uses Fundamental Theorem of Calculus } \\ 1: \text { value of } \int_{0}^{3} A^{\prime}(t) d t \\ 1: \text { meaning of } \int_{0}^{3} A^{\prime}(t) d t\end{array}\right.$

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\mid A_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

CALCULUS AB
SECTION II, Part A
Time-45 minutes
Number of problems- $\mathbf{3}$
A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)
$R(t)=\int_{0}^{t} \frac{1}{16}\left(3+\sin \left(x^{2}\right)\right) d x+6$ for $0 \leq t \leq 3$.
Thus $R(3)=\int_{0}^{3} \frac{1}{16}\left(3+\sin \left(x^{2}\right)\right) d x+6=0.611+6=8.611$

Work for problem 1(b)

$$
\frac{1(b)}{A^{\prime}(t)}=\frac{d A}{d t}=\frac{d A}{d R} \cdot \frac{d R}{d t}=2 \pi R(t) \cdot \frac{1}{10}\left(3+\sin \left(t^{2}\right)\right)=\frac{\pi R(t)}{8}\left(3+\sin \left(t^{2}\right)\right)
$$

Hence at $t=3$ years, $A^{\prime}(3)=\frac{\pi R(3)}{8}\left(3+\sin \left(3^{2}\right)\right)=8.858$. The unit of measure is centimeter ${ }^{2} /$ year.

Work for problem 1(c)

$$
\int_{0}^{3} A^{\prime}(t) d t=A(t)| |_{0}^{3}=A(3)=A(0)=\pi(R(3))^{2}-\pi(R(0))^{2}
$$

$$
=24.207
$$

The unit is cm^{2}, and this intergand means the growth of the area of the cross section from. year 0 to year 3.

CALCULUS AB
SECTION II, Part A
Time- 45 minutes
Number of problems- 3
A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)

$$
\begin{aligned}
& \int d R=\frac{1}{16} \int\left(3+\sin t^{2}\right) d t \\
& R=\frac{1}{16} \int\left(3+\sin t^{2}\right) d t+6 \\
& R(3)=\frac{1}{16} \int_{0}^{3}\left(3+\sin t^{2}\right) d t+6=6.611 \mathrm{~cm}
\end{aligned}
$$

Work for problem 1(b)

$$
\begin{aligned}
& A(t)=\pi r^{2}=\pi(R(t))^{2} \\
& \frac{d A}{d t}=2 \pi R(t) \cdot \frac{d R}{d t} \\
& \left.\frac{d A}{d t}\right|_{3}=\left.2 \pi \cdot R(3) \cdot \frac{d R}{d t}\right|_{3}=8.858 \mathrm{~cm}^{2} / \mathrm{yr}
\end{aligned}
$$

Work for problem 1(c)

$$
\begin{aligned}
& \int_{0}^{3} A^{\prime}(t) d t=\int_{0}^{3} \frac{d A}{d t}=A(3)-A(0) \\
& A(3)=\pi(R(3))^{2}=137.298 \\
& A(0)=\pi(6)^{2}=36 \pi \\
& A(3)-A(0)=24.201 \mathrm{~cm}^{2}
\end{aligned}
$$

$\int_{0}^{3} A^{\prime}(t) d t=24.201 \mathrm{~cm}^{2}$ is the closs-sectional area of the trunk at $t=3$ yrs.

CALCULUS AB
SECTION II, Part A
Time-45 minutes
Number of problems- $\mathbf{3}$
A graphing calculator is required for some problems or parts of problems.

$$
\begin{aligned}
& \text { Work for problem 1(a) } \frac{d R}{d t}=\frac{1}{16}\left(3+\sin \left(t^{2}\right)\right) \Rightarrow d R=\left(\frac{1}{16}\left(3+\sin t^{2}\right)\right) d t \\
& R(t)=\int_{0}^{3}\left[\frac{1}{16}\left(3+\sin t^{2}\right)\right] d t \Rightarrow R(3)-R(0)=\int_{0}^{3}\left[\frac{1}{16}\left(3+\sin t^{2}\right)\right] d t \\
& R(3)-6=0.611 \Rightarrow R(3)=6.611 \text { centimeters }
\end{aligned}
$$

$$
\frac{d A}{d r}=\frac{d A}{d t} \cdot \frac{d t}{d r} \Rightarrow \frac{d A}{d t}=\frac{d A}{d r} \cdot \frac{d r}{d t} \Rightarrow \frac{d A}{d t}=2 \pi r \cdot\left(\frac{1}{16}\left(3+\sin t^{2}\right)\right)
$$

$$
\text { when } t=3 \Rightarrow \frac{d A^{\prime}}{d t}=2 \pi(3)\left(\frac{1}{16}\left(3+\sin 3^{2}\right)\right)=4.020 \frac{\mathrm{~cm}^{2}}{\text { year }}
$$

Work for problem 1(c)

$$
\begin{aligned}
A^{\prime}(t) & =\frac{d A}{d t}=\frac{\pi r}{8}\left(3+\sin t^{2}\right) \Rightarrow \int_{0}^{3} A^{\prime}(t) d t=\int_{0}^{3} \frac{\pi r}{8}\left(3+\sin t^{2}\right) d t \\
& =5.677 \mathrm{~cm}^{2}
\end{aligned}
$$

this integral shows us the difference between the cross-sectional area In the first 3 years, in other words it shows us the increase of the cross-sectional Area in the first 3 years in Cm^{2}.

AP ${ }^{\circledR}$ CALCULUS AB
 2009 SCORING COMMENTARY (Form B)

Question 1

Sample: 1A

Score: 9
This student earned all 9 points. Note that in part (b) the student earned the $A(t)$ point implicitly. In part (c) the student earned the answer point in spite of using a rounded value for $R(3)$ from part (a).

Sample: 1B

Score: 6
The student earned 6 points: 1 point in part (a), 3 points in part (b), and 2 points in part (c). In part (a) the student only earned the point for $R(3)$ since an integral expression for $R(t)$ is not included. In part (b) the student's work is correct. In part (c) the student earned the first 2 points. The student did not earn the point for the meaning of the definite integral since the response mentions cross-sectional area at a particular time rather than growth in cross-sectional area over the three-year period.

Sample: 1C

Score: 4
The student earned 4 points: 1 point in part (a), 2 points in (b), and 1 point in (c). In part (a) the student only earned the point for $R(3)$ since an integral expression for $R(t)$ is not included. In part (b) the last equality on the student's second line earned the first 2 points. Although $A(t)$ is not explicitly stated, the student earned the $A(t)$ point. The student did not earn the answer point since 3 is used, instead of $R(3)$, in the calculation of $\frac{d A}{d t}$ at $t=3$. In part (c) the student earned the point for the meaning of the definite integral.

