

AP[®] Biology 2009 Scoring Guidelines

The College Board

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 5,600 schools, colleges, universities and other educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools and 3,800 colleges through major programs and services in college readiness, college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQT[®] and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities and concerns.

© 2009 The College Board. College Board, Advanced Placement Program, AP, AP Central, SAT, and the acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trademark of the College Board and National Merit Scholarship Corporation.

Permission to use copyrighted College Board materials may be requested online at: www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com. AP Central[®] is the official online home for AP teachers: apcentral.collegeboard.com.

Question 1

An experiment on a species of small freshwater fish recorded their behavioral responses to different temperatures. Ten fish were each tested once, one at a time.

To begin the experiment, a fish was removed from a stock tank (maintained at 22°C) and placed in the temperature-gradient tank drawn below. After the fish had spent 30 minutes in the temperature-gradient tank, the section where the fish was located was recorded. Additional observations were recorded every 5 minutes, for a total of 7 observations per fish. A summary of the combined data for all 10 fish appears below.

Section A Section B Section C Section D Section E

Section	Fish/Section
А	9
В	11
С	34
D	12
E	4

(a) On the axes provided, **construct** the appropriate type of labeled graph showing the relationship between water temperature and fish distribution. **Summarize** the outcome of the experiment. (4 points maximum)

Graph	Summarize
(1 point each; 3 points maximum for graph)	(1 point maximum for summary)
 Correctly labeled and scaled axis Temperature range may be indicated by section with legend Correct orientation: <i>x</i>-axis = temp; <i>y</i>-axis = # fish observed 	• Fish were distributed by temperature, e.g., most fish were observed at moderate temperature range, or 12–17°C
 Correct bar graph/scatter plot Discrete data points only if range is indicated o NO point for line graph 	

Question 1 (continued)

(b) Identify TWO variables that were not specifically controlled in the experimental design, and describe how these variables might have affected the outcome of the experiment. (4 points maximum)

Variable*	Describe
(1 point each; 2 points maximum)	(1 point each; 2 points maximum)
Fish characteristics, e.g., age, size, sex,	Age/mating behavior/sex, SA:V ratio,
schooling, health	tendency to school may affect activity
	levels/distribution of fish
Tank characteristics, e.g., depth, shape,	Depth/shape/size/pressure/ends of tank may
size, gravel, plants, sections/ends	affect distribution of fish "control" tank at
	constant temperature
Water quality, e.g., pH, salt, chemicals,	Attraction/avoidance influences fish
microbes	response to temperature
Placement of fish, time in stock tank	Tendency of fish to remain where placed,
	effect of shock on fish
External stimuli, e.g., light, noise	Attraction/avoidance influences fish
	response to temperature
Oxygen concentration	Attraction/avoidance influences fish
	response to temperature
Time of day/biological rhythms or when	Temperature preference or activity of fish
observations recorded	differs with time of day, e.g., diurnal vs.
	nocturnal
Other acceptable variables**	Other acceptable descriptions

* 1 point for **each** variable, may include two from same category

** NOT type of fish, NOT temperature, since these were set by experimenters

(c) **Discuss** TWO ways that water temperature could affect the physiology of the fish in this experiment. (**4 points maximum**)

Effect (directional)	Explanation of effect
(1 point each; 2 points maximum)	(1 point each; 2 points maximum)
Metabolic rate/activity increase with temperature increase	Related to kinetic energy, enzyme activity (NOT denaturation)
Heart rate/circulation/blood flow increase with temperature increase	Related to kinetic energy, blood vessel constriction/dilation, etc.
Respiration rate, operculum movement, "breathing rate" increase with temperature increase	Related to diffusion rates, metabolic rates
Shock/stress prevent normal activity	Nervous system impairment alters fish movements
Gas exchange (O ₂ or CO ₂) altered at different temperatures	Dissolved oxygen increases at lower temperatures

Question 2

ATP and GTP are primary sources of energy for biochemical reactions.

(a) **Describe** the structure of the ATP or the GTP molecule. (1 point each; 2 points maximum)

- Adenosine + 3 phosphates or guanosine + 3 phosphates.
- Elaborating on the phosphate bonds, e.g., unstable, negatively charged. Mentioning without explaining "high-energy bonds" is insufficient.
- Adenosine or guanosine described as adenine or guanine bound to ribose.

Note: adenine + ribose + 3 phosphates earns 2 points.

- (b) Explain how chemiosmosis produces ATP. (1 point each; 3 points maximum)
 - Electron transport, e.g., linked to proton pumps, coenzymes, NADH.
 - H+ pumped to one side of the membrane, photosynthesis—inside thylakoid, respiration—outside cristae.
 - Proton gradient established, has potential energy or capacity to do work.
 - ATP synthases or channel proteins generate ATP.
- (c) Describe TWO specific cell processes that require ATP and explain how ATP is used in each process. (4 points maximum)

	Description of process	How ATP is used
	(1 point per process; 2 points maximum)	(1 point per process; 2 points maximum)
Mechanical	Muscle, sliding filament; cilia or flagella, propulsion; chromosome movement in mitosis or meiosis	$ATP \rightarrow ADP + P$ connected to process or energy coupling, e.g., conformational change in myosin head
Transport	Active transport or transport against gradient; sodium-potassium pump; endocytosis or exocytosis	ATP \rightarrow ADP + P connected to process, e.g., phosphorylating the transport protein
Chemical	Hydrolysis or synthesis; specific chemical reaction, e.g., photosynthesis or glycolysis; kinase activity	$ATP \rightarrow ADP + P$ connected to process or energy coupling, e.g., phosphorylating glucose in glycolysis or PGA in Calvin cycle

Question 2 (continued)

(d) An energy pyramid for a marine ecosystem is shown below. Label each trophic level of the pyramid and provide an example of a marine organism found at each level of this pyramid. Explain why the energy available at the top layer of the pyramid is a small percentage of the energy present at the bottom of the pyramid. (3 points maximum)

	Explanation
	(1 point per box; 3 points maximum)
Label trophic levels	Producer or autotroph $\rightarrow 1^{\circ}$ consumer or herbivore $\rightarrow 2^{\circ}$ consumer or carnivore
	\rightarrow 3° consumer; no point for mentioning detritivores or decomposers
Examples of <u>marine</u>	Algae \rightarrow zooplankton \rightarrow small fish \rightarrow shark
organisms	Type of plankton must be specified if used above producer level; "fish" can be
	used <u>once</u> if unspecified; top level may include terrestrial organisms
Energy transfer	Energy transferred due to metabolic activities, heat, work, entropy
	Mentioning without explaining 10% energy transfer between trophic levels is
	insufficient

Note: Students must receive points in all four sections to earn a score of 10.

Question 3

Phylogeny is the evolutionary history of a species.

(a) The evolution of a species is dependent on changes in the genome of the species. Identify TWO mechanisms of genetic change, and explain how each affects genetic variation. (4 points maximum)

	Identification	Explanation
	(1 point each; 2 points maximum)	(1 point each; 2 points maximum)
DNA	Mutation, e.g., point, frameshift, insertions,	Change in nucleotide sequence or
(molecular)	deletions	amino acid sequence or protein
		structure or gene expression, or change
		in phenotype
	Duplication, e.g., gene, chromosome,	Gene "families," which then diverge by
	genome, sympatric speciation	mutation; change in ploidy
	Rearrangement, e.g., gene order, inversions,	Chromosome structure altered; change
	chromosome fusion, transposons	in crossover frequency
Cellular	Crossing over, independent assortment,	Increase gamete diversity
	segregation, nondisjunction (meiosis)	
	Random fertilization (sexual reproduction)	Many possible gamete combinations
Population	Genetic drift or bottleneck or founder effects	Population allelic/gene frequencies
	Gene flow (migration)	altered or gain or loss of alleles/genes
	Geographic isolation or allopatric speciation	
	Nonrandom mating (sexual selection)	Reproductive fitness/differential success
	Sympatric speciation	
	Natural selection	

Question 3 (continued)

(b) Based on the data in the table below, **draw** a phylogenetic tree that reflects the evolutionary relationships of the organisms based on the differences in their cytochrome *c* amino-acid sequences and **explain** the relationships of the organisms. Based on the data, **identify** which organism is most closely related to the chicken and **explain** your choice. **(4 points maximum)**

THE NUMBER O.	F' AMINO ACII) DIFFERENCE:	S IN CY'	I'OCHROME <i>c</i>
	AMONG VAF	RIOUS ORGANIS	SMS	

	Horse	Donkey	Chicken	Penguin	Snake
Horse	0	1	11	13	21
Donkey		0	10	12	20
Chicken			0	3	18
Penguin				0	17
Snake					0

Phylogenetic tree: rooted trees with common ancestor, and with snakes, birds, mammals in correct relative order **(1 point for tree)**

- Cytochrome *c*: the more differences in amino acids of cytochrome *c*, the less closely related, OR fewer differences, more closely related. (1 point)
- Penguin is most closely related to chicken. (1 point)
- Three amino acids differing between penguin and chicken/penguin has fewest differences from chicken. (1 point)

Question 3 (continued)

(c) Describe TWO types of evidence—other than the comparison of proteins—that can be used to determine the phylogeny of organisms. Discuss one strength of each type of evidence you described.
 (4 points maximum)

Description	Strength
(1 point per box; 2 points maximum)	(1 point each; 2 points maximum)
Fossil	Shows direct evidence of common ancestor, follow
Observe past organisms	evolution (changes over time) from common
	ancestor
Homology: morphology	Similarities in form(s) show common
Organismal structure/form	ancestry/DNA
Vestigial structures	
Homology: embryology/development	Similarities in development show common
Morphology of embryos; changes in gene	ancestry/DNA
expression during development	
Homology: reproduction	Similarities in reproduction strategies show
Comparison of reproductive strategies or life	common ancestry/DNA
cycles: cell division, gamete production,	
gamete type, etc.	
DNA sequence	Similarities in sequences show common ancestry
Comparison of DNA sequences in specific	
genes; molecular homologies	
Biogeography	Uses both past and present information to show
Analysis of organism distribution(s)	common ancestry/DNA
Direct observation/behavior	Similarities in behaviors indicate common
Watch organism in natural setting	ancestry/DNA

Question 4

The flow of genetic information from DNA to protein in eukaryotic cells is called the central dogma of biology.

(a) **Explain** the role of each of the following in protein synthesis in eukaryotic cells. **(5 points maximum)**

	Description (1 point each)
RNA polymerase	$DNA \rightarrow RNA$
Spliceosomes (snRNPs)	Removes the introns and connects (splices) the exons in RNA
Codons	Codes for amino acids/signals
Ribosomes	$RNA \rightarrow protein or site of protein synthesis$
tRNA	Transports amino acids

(b) Cells regulate both protein synthesis and protein activity. **Discuss** TWO specific mechanisms of protein regulation in eukaryotic cells. **(4 points maximum)**

<u>Idea of the mechanism</u>	Discussion	
(1 point)	(1 point)	
Promotor	increases RNA polymerase binding	Protein Synthesis
Enhancer	increases transcription	
Methylation	adding methyl group inhibits transcription	
Acetylation	adding acetyl group promotes transcription	
DNA packaging	loosening/tightening chromatin promotes/inhibits tra	nscription
RNA processing	GTP cap or Poly-A tail	
RNA editing	removing of introns	
Alternative splicing	editing in different ways to get new/different RNA/pc	lypeptides
mRNA degradation	targets RNA for destruction (miRNA or siRNA)	
Protein processing	polypeptide \rightarrow protein modifications (folding, chapered	onins, cleavage, etc.)
Protein degradation	proteases break down proteins	

> © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.

Question 4 (continued)

(c) The central dogma does not apply to some viruses. **Select** a specific virus or type and **explain** how it deviates from the central dogma. **(3 points maximum)**

Names a specific RNA virus or type of RNA virus (HIV, flu virus, etc.)	(1 point)
Deviation from the central dogma (RNA \rightarrow DNA or RNA \rightarrow protein or RNA \rightarrow RNA)	(1 point)
More detailed explanation of the deviation from the central dogma	(1 point)