

AP® Computer Science AB
2008 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and

opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other

educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and

3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and

teaching and learning. Among its best-known programs are the SAT
®

, the PSAT/NMSQT
®

, and the Advanced Placement

Program
®

 (AP
®

). The College Board is committed to the principles of excellence and equity, and that commitment is embodied

in all of its programs, services, activities, and concerns.

© 2008 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, SAT, and the

acorn logo are registered trademarks of the College Board. PSAT/NMSQT is a registered trademark of the College Board and

National Merit Scholarship Corporation.

Permission to use copyrighted College Board materials may be requested online at:

www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-2-

COMPUTER SCIENCE AB
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE
TO BE WRITTEN IN JAVA.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported

where appropriate.

• The java.util.Stack and java.util.PriorityQueue classes and the
java.util.Queue interface (page A2 in the Appendix) each inherit methods that access
elements in a way that violates their abstract data structure definitions. Solutions that use
objects of types Stack, Queue, and PriorityQueue should use only the methods
listed in the Appendix for accessing and modifying those objects. The use of other methods
may not receive full credit.

• Assume that the implementation classes ListNode and TreeNode (page A4 in the Appendix)
are used for any questions referring to linked lists or trees, unless otherwise specified.

• ListNode and TreeNode parameters may be null. Otherwise, unless noted in the question,
assume that parameters in method calls are not null and that methods are called only when their
preconditions are satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed
in classes defined in that question. Writing significant amounts of code that can be replaced by a call
to one of these methods may not receive full credit.

• When Big-Oh running time is required for a response, you must use the most restrictive Big-Oh expression.

For example, if the running time is ()O n , a response of 2()O n will not be given credit.

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-3-

 1. A key string for a word is the string obtained when the letters in the word are arranged in alphabetical order.
For example, the words "poodle" and "looped" both have the key string "deloop". A set of words form an
anagram set if all words in the set have the same key string. Some examples of anagram sets include
{"poodle", "looped"}, {"nastier", "retains", "retinas"}, and {"discounter", "introduces", "reductions"}.

 Consider the problem of creating a group of anagram sets from a list of words. A word with no anagrams in the

list will be contained in a singleton set. The example below shows a list of words and the anagram sets that are
produced from that list.

Original list of words

[ant, introduces, poodle, tan, looped, discounter, nastier, polled, retains, retinas, reductions]

Anagram sets from the list of words
{tan, ant}

{introduces, reductions, discounter}
{poodle, looped}

{retains, retinas, nastier}
{polled}

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-4-

 The anagram sets will be organized as a map in which each key is a key string and the associated value is the set
of words that each have that key string. The following diagram shows a map with the key strings and associated
anagram sets that would be created from the list in the previous example.

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-5-

 A partial declaration of the AnagramGrouper class is as follows: You will implement two methods in the
AnagramGrouper class. The class contains a private helper method that can be used to create a key string
from a word.

public class AnagramGrouper
{
 // Maps a key string to a corresponding anagram set
 private HashMap<String, HashSet<String>> groups;

 /** Constructs a map from words in which the keys are key strings and the
 * value associated with a key string is the set of anagrams having that key string.
 * Postcondition: each entry of words is contained in an anagram set
 * @param words a list of strings to be grouped into anagram sets
 * Precondition: words.size() > 0
 */
 public AnagramGrouper(List<String> words)
 { /* to be implemented in part (a) */ }

 /** @return a set of all anagram sets of largest size in this AnagramGrouper
 */
 public HashSet<HashSet<String>> findLargestSets()
 { /* to be implemented in part (b) */ }

 /** @param s a word
 * @return a string with the same letters as s, arranged in alphabetical order
 */
 private String createKeyString(String s)
 { /* implementation not shown */ }

 // There may be instance variables, constructors, and methods that are not shown.
}

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-6-

(a) Write the AnagramGrouper constructor. The constructor takes a list of words and constructs a map in
which each key is a key string and the associated value is the set of words that each have that key string. The
map should contain all the anagram sets that are generated from the list of words.

 Complete the AnagramGrouper constructor below.

 /** Constructs a map from words in which the keys are key strings and the
 * value associated with a key string is the set of anagrams having that key string.
 * Postcondition: each entry of words is contained in an anagram set
 * @param words a list of strings to be grouped into anagram sets
 * Precondition: words.size() > 0
 */
 public AnagramGrouper(List<String> words)

(b) Write the AnagramGrouper method findLargestSets. This method analyzes the instance
variable groups and returns a set containing the largest anagram set(s); that is, the set(s) with the most
elements. In the example shown at the beginning of the question, the method would return a set containing
the sets {introduces, reductions, discounter} and {retains, retinas, nastier}.

 Complete method findLargestSets below.

 /** @return a set of all anagram sets of largest size in this AnagramGrouper
 */
 public HashSet<HashSet<String>> findLargestSets()

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-7-

 2. Suppose myList is a linked list. A loop such as

for (int k = 0; k < myList.size(); k++)
 Object a = myList.get(k);

 can be inefficient if the get method always starts at the front of the list to locate each element.

 This question describes a variant of a linked list data structure that can improve the efficiency of the loop. The

ListNode class is used as part of the implementation of a class APList that remembers the node and index
of the most recently visited element of the list. If the index for the next get is greater than or equal to the
remembered index, the traversal starts at the remembered node instead of the front of the list.

 For example, consider the following APList myList that contains five elements. The call

myList.get(2) returns the value C. The remembered node and remembered index will refer to the node at
index 2 as shown in the diagram.

 If the call myList.get(2) is executed again, the value C is returned again, but the traversal begins at the

remNode position, instead of front, because the remembered index is 2. No other nodes are traversed
because remNode is already at the correct position.

 A subsequent call myList.get(4) will start the traversal at the remNode position instead of front

because the remembered index is 2. It will then move forward two nodes to retrieve the node at index 4 (the
value E), set remNode to the new position, and update remIndex as shown in the following diagram.

 Finally, a subsequent call myList.get(3) will start the traversal at front because the remembered

index is greater than the desired index. Starting at front, it will move forward three nodes to retrieve the
node at index 3 (the value D), set remNode to the new position, and update remIndex as shown in the
following diagram.

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-8-

 The partial declaration of the APList class is shown below.

public class APList
{
 private ListNode front; // first node of this list (null if empty)

 private int listSize; // the number of elements in this list

 private int remIndex; // the index of the remembered node

 private ListNode remNode; // a reference to the node accessed by most recent call to get

 /** Constructs an empty APList.
 */
 public APList()
 {
 front = null;
 remIndex = -1;
 remNode = null;
 listSize = 0;
 }

 /** Gets a value at a given index in this list.
 * @param n the index at which to get a value
 * Precondition: 0 ≤ n < size()
 * @return the object at the given index
 * Postcondition: The remembered node and index refer to the node at index n
 */
 public Object get(int n)
 { /* to be implemented in part (a) */ }

 /** Adds a new node containing obj to the front of this list.
 * @param obj the value to add to the list
 */
 public void addFirst(Object obj)
 { /* to be implemented in part (b) */ }

 /** @return the size of this list
 */
 public int size()
 { return listSize; }

 // There may be methods that are not shown.
}

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-9-

(a) Write the APList method get. This method returns the value contained in the list node at index n. If
the index n is greater than or equal to the remembered index, the method should start its traversal at the
remembered node; otherwise, the method should start at the front of the list. The remembered node and
index should be updated to refer to the node at the given index.

 Complete method get below.

 /** Gets a value at a given index in this list.
 * @param n the index at which to get a value
 * Precondition: 0 ≤ n < size()
 * @return the object at the given index
 * Postcondition: The remembered node and index refer to the node at index n
 */
 public Object get(int n)

(b) Write the APList method addFirst. Instance variables should be updated as necessary. This method
should not change the value of remNode since there is no advantage to remembering a node at the front
of the list.

 Complete method addFirst below.

 /** Adds a new node containing obj to the front of this list.
 * @param obj the value to add to the list
 */
 public void addFirst(Object obj)

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-10-

(c) Consider the following methods.

public static void printForward(SomeListType myList)
{
 int n = myList.size();
 for (int k = 0; k < n; k++)
 {
 Object obj = myList.get(k);
 System.out.println(obj);
 }
}

public static void printReverse(SomeListType myList)
{
 int n = myList.size();
 for (int k = n - 1; k >= 0; k--)
 {
 Object obj = myList.get(k);
 System.out.println(obj);
 }
}

 Give the big-Oh running time (in terms of n) of these methods for the following list types, where n is the
number of elements in the list.

SomeListType printForward printReverse

LinkedList<Object>

APList

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-11-

 3. This question involves reasoning about the code from the GridWorld case study. A copy of the code is provided
as part of this exam.

 Consider the implementation of a multigrid, a gridlike structure in which each location can hold multiple

occupants. Instead of storing a single occupant, a grid location stores a set of occupants. An empty location is
always indicated by null, not an empty set.

 A partial declaration of the Multigrid interface is as follows. Four of the Grid methods require changes

in this interface.

public interface Multigrid
{
 Set<Object> get(Location loc);

 void put(Location loc, Object obj);

 ArrayList<Object> getNeighbors(Location loc);

 void remove(Location loc, Object obj);

 // other methods identical to the Grid interface
}

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-12-

 A partial declaration of the UnboundedMultigrid class is as follows. You will complete three of the
methods in the UnboundedMultigrid class.

public class UnboundedMultigrid implements Multigrid
{
 private UnboundedGrid<Set<Object>> grid; // no other instance variables

 public UnboundedMultigrid()
 { grid = new UnboundedGrid<Set<Object>>(); }

 /** @param loc a valid location in this grid
 * @return a set of all objects at loc; an empty set, if no objects at loc
 * Postcondition: the contents of this grid remain unchanged
 */
 public Set<Object> get(Location loc)
 { /* to be implemented in part (a) */ }

 /** Puts an object at a given location in this grid.
 * Precondition: (1) loc is valid in this grid. (2) obj is not null.
 * @param loc the location at which to put the object
 * @param obj the new object to be added
 */
 public void put(Location loc, Object obj)
 { /* to be implemented in part (b) */ }

 /** Gets the neighboring occupants in all eight compass directions
 * (north, northeast, east, southeast, south, southwest, west, and northwest).
 * @param loc a location in this grid
 * Precondition: loc is valid in this grid
 * @return an array list of the objects in the occupied locations adjacent to loc in this grid
 */
 public ArrayList<Object> getNeighbors(Location loc)
 { /* to be implemented in part (c) */ }

 // other methods not shown
}

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-13-

(a) Complete the UnboundedMultigrid method get below.

 /** @param loc a valid location in this grid
 * @return a set of all objects at loc; an empty set, if no objects at loc
 * Postcondition: the contents of this grid remain unchanged
 */
 public Set<Object> get(Location loc)

(b) Assume that the UnboundedMultigrid method get works as specified, regardless of what you
wrote in part (a).

 Complete the UnboundedMultigrid method put below.

 /** Puts an object at a given location in this grid.
 * Precondition: (1) loc is valid in this grid. (2) obj is not null.
 * @param loc the location at which to put the object
 * @param obj the new object to be added
 */
 public void put(Location loc, Object obj)

(c) Assume that the UnboundedMultigrid methods get and put work as specified, regardless of
what you wrote in parts (a) and (b).

 Complete the UnboundedMultigrid method getNeighbors below.

 /** Gets the neighboring occupants in all eight compass directions
 * (north, northeast, east, southeast, south, southwest, west, and northwest).
 * @param loc a location in this grid
 * Precondition: loc is valid in this grid
 * @return an array list of the objects in the occupied locations adjacent to loc in this grid
 */
 public ArrayList<Object> getNeighbors(Location loc)

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-14-

 4. A filter is an object that examines strings and accepts those that meet a particular criterion.

 The Filter interface is defined as follows.

public interface Filter
{
 /** @param text a string to consider for acceptance
 * @return true if this Filter accepts text; false otherwise
 */
 boolean accept(String text);
}

 In this question, you will implement one type of Filter and write a method to build a variety of filters. Many

different filters can implement the Filter interface. The SimpleFilter and NotFilter are both
implementations of the Filter interface and are described as follows:

 The SimpleFilter class accepts any string that contains a particular substring. It has one constructor that

takes a single parameter that contains the string to be found in the text. The NotFilter is constructed with a
single Filter parameter and accepts text if and only if the Filter it was constructed with rejects the text.

 For example, the following code segment creates a filter veggieFilter that accepts all strings that contain

the substring "vegetable" and another filter noVeggie that accepts all strings that do NOT contain the
substring "vegetable".

Filter veggieFilter = new SimpleFilter("vegetable");
Filter noVeggie = new NotFilter(veggieFilter);

 The following table illustrates the results of several calls to the veggieFilter accept method and the

noVeggie accept method.

Method Call Result

veggieFilter.accept("vegetable soup") true

veggieFilter.accept("fruit salad") false

noVeggie.accept("vegetable soup") false

noVeggie.accept("fruit salad") true

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
-15-

(a) An OrFilter is a Filter that contains two or more objects that implement the Filter interface
(such as a SimpleFilter, an OrFilter, a NotFilter, or other types of Filter objects).
The OrFilter accept method accepts a given string if and only if one or more of the filters contained
in the OrFilter accepts the string. An OrFilter is constructed with two filters. More filters can be
included in the OrFilter by calling the add method. The following code segment illustrates a filter
that accepts all strings that contain either one or both of the substrings "vegetable" and "fruit" or
that do not contain the string "poison".

Filter veggieFilter = new SimpleFilter("vegetable");
Filter fruitFilter = new SimpleFilter("fruit");
Filter noPoison = new NotFilter(new SimpleFilter("poison"));

OrFilter healthyFood = new OrFilter(veggieFilter, fruitFilter);
 // healthyFood will accept strings containing "vegetable" or "fruit"

healthyFood.add(noPoison);
 // healthyFood will accept strings containing "vegetable" or "fruit"
 // or strings without "poison"

 The following table illustrates the results of several calls to the healthyFood accept method.

Method Call Result

healthyFood.accept("vegetable soup is not poison") true

healthyFood.accept("fruit salad") true

healthyFood.accept("a poisoned apple") false

healthyFood.accept("salad") true

 Write the OrFilter class below.

2008 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2008 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

-16-

(b) Write the buildFilter method that can be used to build filters that meet a set of criteria as described
below. The buildFilter method is part of an unrelated class.

 You may assume the existence of an AndFilter class that is similar to the OrFilter class except
that it accepts a string only if all of its component filters accept the string. Consider the following code
segment.

Filter appleFilter = new SimpleFilter("apple");
Filter peachFilter = new SimpleFilter("peach");
Filter fruits = new AndFilter(appleFilter, peachFilter);

boolean b1 = fruits.accept("peach cobbler"); // b1 is set to false
boolean b2 = fruits.accept("peaches and apples"); // b2 is set to true

 The method buildFilter takes two parameters: desirable, a list of two or more strings, and

notAllowed, a string. The filter returned by buildFilter should accept all strings that contain at
least one string from the desirable array and do not contain the notAllowed string.

 The following code segment and table show an example of using the buildFilter method.

String[] primary = {"red", "blue", "yellow"};
Filter primaryColors = buildFilter(primary, "green");

Method Call Result

primaryColors.accept("Roses are red, violets are blue") true

primaryColors.accept("blue grass is really green") false

primaryColors.accept("The rainbow has many colors") false

 In writing buildFilter, you may use any of the four filters described (SimpleFilter,

NotFilter, OrFilter, and AndFilter). Assume that these classes work as specified, regardless
of what you wrote in part (a).

 Complete method buildFilter below.

/** @param desirable contains strings that are allowed
 * Precondition: desirable.length > 1
 * @param notAllowed the string that is not allowed
 * @return a Filter that accepts strings that contain at least one string
 * in desirable and do not contain notAllowed.
 */
public static Filter buildFilter(String[] desirable,
 String notAllowed)

STOP

END OF EXAM

