Answer the following questions regarding the decomposition of arsenic pentafluoride, AsF₅(g).

(a) A 55.8 g sample of AsF₅(g) is introduced into an evacuated 10.5 L container at 105°C.
 (i) What is the initial molar concentration of AsF₅(g) in the container?

\[
\text{mol AsF}_5 = \frac{55.8 \text{ g AsF}_5}{169.9 \text{ g AsF}_5} = 0.328 \text{ mol}
\]
\[
[\text{AsF}_5]_i = \frac{0.328 \text{ mol AsF}_5}{10.5 \text{ L}} = 0.0313 \text{ M}
\]

One point is earned for the correct molar mass.
One point is earned for the correct concentration.

(ii) What is the initial pressure, in atmospheres, of the AsF₅(g) in the container?

\[
P = \frac{0.328 \text{ mol} \times 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1} \times 378 \text{ K}}{10.5 \text{ L}} = 0.969 \text{ atm}
\]

One point is earned for the correct substitution.
One point is earned for the correct pressure.

At 105°C, AsF₅(g) decomposes into AsF₃(g) and F₂(g) according to the following chemical equation.

\[
\text{AsF}_5(g) \rightleftharpoons \text{AsF}_3(g) + \text{F}_2(g)
\]

(b) In terms of molar concentrations, write the equilibrium-constant expression for the decomposition of AsF₅(g).

\[
K = \frac{[\text{AsF}_3] [\text{F}_2]}{[\text{AsF}_5]}
\]

One point is earned for the correct equation.

(c) When equilibrium is established, 27.7 percent of the original number of moles of AsF₅(g) has decomposed.
 (i) Calculate the molar concentration of AsF₅(g) at equilibrium.

\[
100.0\% - 27.7\% = 72.3\%
\]
\[
[\text{AsF}_3] = 0.723 \times 0.0313 \text{ M} = 0.0226 \text{ M}
\]

One point is earned for the correct concentration.
(ii) Using molar concentrations, calculate the value of the equilibrium constant, K_{eq}, at 105°C.

\[
\text{[AsF}_3\text{]} = [F_2] = 0.277 \times [\text{AsF}_5]_i
\]

\[
= 0.277 \times 0.0313 \text{ M} = 0.00867 \text{ M}
\]

\[
K_{eq} = \frac{[\text{AsF}_3] [F_2]}{[\text{AsF}_5]} = \frac{[0.00867] [0.00867]}{[0.0226]} = 0.00333
\]

One point is earned for setting $[\text{AsF}_3] = [F_2]$.

Note: the point is not earned if the student indicates that $[\text{AsF}_3] = [F_2] = [\text{AsF}_5]$.

One point is earned for the correct calculation of $[\text{AsF}_3]$ and $[F_2]$.

One point is earned for the correct calculation of K_{eq}.

(d) Calculate the mole fraction of $F_2(g)$ in the container at equilibrium.

\[
\text{mol AsF}_5 = 0.0226 \text{ M} \times 10.5 \text{ L} = 0.237 \text{ mol}
\]

\[
\text{mol } F_2 = \text{ mol AsF}_3 = 0.00867 \text{ M} \times 10.5 \text{ L} = 0.0910 \text{ mol}
\]

\[
\text{mol fraction } F_2 = \frac{\text{mol } F_2}{\text{mol } F_2 + \text{ mol AsF}_3 + \text{ mol AsF}_5}
\]

\[
= \frac{0.0910}{0.0910 + 0.0910 + 0.237} = 0.217
\]

OR

\[
\text{mol fraction } F_2 = \frac{0.00864}{0.00864 + 0.00864 + 0.0226} = 0.217
\]

One point is earned for the correct calculation of the mole fraction of $F_2(g)$.
CHEMISTRY
Section II
(Total time—95 minutes)

Part A
Time—55 minutes

YOU MAY USE YOUR CALCULATOR FOR PART A.

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Questions 1, 2, and 3. The Section II score weighting for each question is 20 percent.

1. Answer the following questions regarding the decomposition of arsenic pentafluoride, \(\text{AsF}_5(g) \).

(a) A 55.8 g sample of \(\text{AsF}_5(g) \) is introduced into an evacuated 10.5 L container at 105°C.

 (i) What is the initial molar concentration of \(\text{AsF}_5(g) \) in the container?

 (ii) What is the initial pressure, in atmospheres, of the \(\text{AsF}_5(g) \) in the container?

At 105°C, \(\text{AsF}_5(g) \) decomposes into \(\text{AsF}_3(g) \) and \(\text{F}_2(g) \) according to the following chemical equation.

\[
\text{AsF}_5(g) \rightleftharpoons \text{AsF}_3(g) + \text{F}_2(g)
\]

(b) In terms of molar concentrations, write the equilibrium-constant expression for the decomposition of \(\text{AsF}_5(g) \).

(c) When equilibrium is established, 27.7 percent of the original number of moles of \(\text{AsF}_5(g) \) has decomposed.

 (i) Calculate the molar concentration of \(\text{AsF}_5(g) \) at equilibrium.

 (ii) Using molar concentrations, calculate the value of the equilibrium constant, \(K_{eq} \), at 105°C.

(d) Calculate the mole fraction of \(\text{F}_2(g) \) in the container at equilibrium.

\[
(i) \quad [\text{AsF}_5] = \frac{\text{number of moles of } \text{AsF}_5}{\text{volume of solution (L)}}
\]

\[
\text{volume of solution} = 10.5 \text{ L}
\]

GO ON TO THE NEXT PAGE.
number of moles of AsF₅ = \frac{\text{mass of AsF}_5}{\text{molar mass of AsF}_5}

mass of AsF₅ = 55.8 g

molar mass of AsF₅ = 74.929 + (19.008 \text{ g/mol}) = 163.91 \text{ g/mol}

number of moles of AsF₅ = \frac{55.8 \text{ g}}{163.91 \text{ g/mol}} = 0.338 \text{ mol}

[AsF₅] = \frac{0.338 \text{ mol}}{10.5 \text{ L}} = 0.0319 \text{ mol/L}

c) \frac{PV}{nRT} = \frac{nRT}{V}

n = 0.338 \text{ mol}

P = 0.8206 \text{ atm} \cdot \text{mol} / \text{L} \cdot \text{K}

V = 10.5 \text{ L}

T = 273 + 378 = 651 \text{ K}

P \cdot (0.338 \text{ mol}) \cdot 0.08206 \text{ atm} \cdot \text{mol} / \text{L} \cdot \text{K} \cdot 651 \text{ K}

P = 0.969 \text{ atm}

d) \frac{[\text{AsF}_3] \cdot [F_2]}{[\text{AsF}_5]}

-7- GO ON TO THE NEXT PAGE.
c) The number of moles of AsF_5 has decomposed is:
\[n = 0.277 \]
\[n = 0.328 \times 0.277 = 0.0909 \text{ mol} \]

(i) number of moles of AsF_5 has remained at equilibrium is:
\[n_2 = 0.328 \times 0.0909 \text{ mol} = 0.237 \text{ mol} \]

So,
\[[\text{AsF}_5]_{\text{equilibrium}} = \frac{0.237 \text{ mol}}{10.5 \text{ L}} = 0.0226 \text{ mol} \cdot \text{L}^{-1} \]

civ) $\text{AsF}_5 \quad \text{AsF}_3 \quad \text{F}_2$

\[t = 0.328 \text{ mol} \quad e = 0 \text{ mol} \]
\[c = 0.0909 \text{ mol} \quad c = 0.0909 \quad c = 0.0909 \text{ mol} \]
\[e = 0.237 \text{ mol} \quad e = 0.0909 \quad e = 0.0909 \text{ mol} \]

\[[\text{F}_2] - [\text{AsF}_3] = \frac{0.0909 \text{ mol}}{10.5 \text{ L}} = 0.00866 \text{ mol} \cdot \text{L}^{-1} \]

\[K_{eq} = \frac{(0.00866) (0.00866)}{(0.0226)} = 3.32 \times 10^{-3} \]

d) $\text{KF}_2 \quad n \text{F}_2$

\[n = \frac{n_{\text{F}_2}}{n_{\text{F}_3}} \]
\[n_{\text{F}_2} + n_{\text{AsF}_3} + n_{\text{AsF}_5} \]
\[0.0909 \text{ mol} \]
\[(0.0909 + 0.0909 + 0.237) \text{ mol} \]
\[= 0.217 \]
CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on the lavender insert.

Answer Questions 1, 2, and 3. The Section II score weighting for each question is 20 percent.

1. Answer the following questions regarding the decomposition of arsenic pentafluoride \(\text{AsF}_5(g) \).

(a) A 55.8 g sample of \(\text{AsF}_5(g) \) is introduced into an evacuated 10.5 L container at 105°C.

 (i) What is the initial molar concentration of \(\text{AsF}_5(g) \) in the container?

 (ii) What is the initial pressure, in atmospheres, of the \(\text{AsF}_5(g) \) in the container?

At 105°C, \(\text{AsF}_5(g) \) decomposes into \(\text{AsF}_3(g) \) and \(\text{F}_2(g) \) according to the following chemical equation.

\[\text{AsF}_5(g) \rightarrow \text{AsF}_3(g) + \text{F}_2(g) \]

(b) In terms of molar concentrations, write the equilibrium-constant expression for the decomposition of \(\text{AsF}_5(g) \).

(c) When equilibrium is established, 27.7 percent of the original number of moles of \(\text{AsF}_5(g) \) has decomposed.

 (i) Calculate the molar concentration of \(\text{AsF}_5(g) \) at equilibrium.

 (ii) Using molar concentrations, calculate the value of the equilibrium constant, \(K_{eq} \), at 105°C.

(d) Calculate the mole fraction of \(\text{F}_2(g) \) in the container at equilibrium.

1. (a) \(\text{mol of } \text{AsF}_5 = \frac{55.8}{169} = 0.329 \text{ mol} \)

 \[\text{molality} = \frac{0.329 \text{ mol}}{10.5 \text{ L}} = 0.031 \text{ mol/L} \]

 (1) \(PV = nRT \)

 \[P = \frac{nRT}{V} = \frac{0.031 \text{ mol/L} \times 0.0821 \text{ atm} \times 378 \text{ K}}{10.5 \text{ L}} = 0.091 \]

 \[\therefore 0.091 \]

GO ON TO THE NEXT PAGE.
(b) \[K_{eq} = \frac{[AsF_3][F_2]}{[AsF_5]} \]

(c) (i) \[0.770 \text{ mol} \times \frac{23.7}{100} = 0.239 \]

(ii) \[\text{AsF}_5(g) \rightleftharpoons \text{AsF}_3(g) + \text{F}_2(g) \]

\[
\begin{array}{ccc}
& 0.770 \text{ mol} & 0 \text{ mol} & 0 \text{ mol} \\
(1) & 0.239 \text{ mol} & 0.091 \text{ mol} & 0.091 \text{ mol} \\
(2) & -0.091 & +0.091 & +0.091 \\
(3) & 0.239 \text{ mol} & 0.091 \text{ mol} & 0.091 \text{ mol} \\
\end{array}
\]

\[K_{eq} = \frac{[0.091 \text{ mol}^2]}{[0.239 \text{ mol}]} = 0.0315 \]

(d) mole fraction of F₂:

\[
\frac{\text{mole F}_2}{\text{mole AsF}_5 + \text{mole F}_2 + \text{mole AsF}_3} = \frac{0.091}{0.239 + 0.091 + 0.091} = 0.216
\]
Clearly show the method used and the steps involved in arriving at your answers. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

Be sure to write all your answers to the questions on the lined pages following each question in this booklet. Do NOT write your answers on this page. The Section II score weighting for each question is 20 percent.

1. Answer the following questions regarding the decomposition of arsenic pentafluoride, AsF$_5$(g).

(a) A 55.8 g sample of AsF$_5$(g) is introduced into an evacuated 10.5 L container at 105°C.
 (i) What is the initial molar concentration of AsF$_5$(g) in the container?
 (ii) What is the initial pressure, in atmospheres, of the AsF$_5$(g) in the container?

At 105°C, AsF$_5$(g) decomposes into AsF$_3$(g) and F$_2$(g) according to the following chemical equation.

\[\text{AsF}_5(g) \rightarrow \text{AsF}_3(g) + \text{F}_2(g) \]

(b) In terms of molar concentrations, write the equilibrium-constant expression for the decomposition of AsF$_5$(g).

(c) When equilibrium is established, 27.7 percent of the original number of moles of AsF$_5$(g) has decomposed.
 (i) Calculate the molar concentration of AsF$_5$(g) at equilibrium.
 (ii) Using molar concentrations, calculate the value of the equilibrium constant, K_{eq}, at 105°C.

(d) Calculate the mole fraction of F$_2$(g) in the container at equilibrium.

1. Decomposition of arsenic pentafluoride, AsF$_5$(g)

(a) 55.8 g sample of AsF$_5$(g) in an evacuated 10.5 L container at 105°C

(i) Initial molar concentration of AsF$_5$(g) in the container

\[
\text{mol of AsF}_5 \text{ 's mass equals } 74.91 \times 0.05 = 74.91 \times 10^{-2} \text{ mol of AsF}_5(g)
\]

(ii) Since $PV = nRT$, $P = \frac{nRT}{V}$

Go on to the next page.
ADDITIONAL PAGE FOR ANSWERING QUESTION 1

\[V = 10.5 \text{ L} \quad P = 0.088 \text{ atm} \quad n = 0.3 \text{ mol} \]

\[T = 25^\circ \text{C} \quad \text{K} = 298.15 \text{ K} \]

\[\Rightarrow P = \frac{0.088 \text{ atm} \times 298.15 \text{ K}}{10.5 \text{ L}} \approx 0.26 \text{ atm} \]

\[\Rightarrow 0.88 \text{ atm} \approx 0.85 \text{ atm} \]

\[+105^\circ \text{C} \quad \text{AsF}_5(g) \text{ decompose into AsF}_3(g) \text{ and F}_2(g) \]

\[\text{AsF}_5(g) \rightleftharpoons \text{AsF}_3(g) + \text{F}_2(g) \]

\[(b) \quad k_c = \frac{[\text{AsF}_3][\text{F}_2]}{[\text{AsF}_5]} \]

\[(c) \quad \text{At equilibrium, 97.7% of moles of AsF}_5\text{ decomposed} \]

\[1. \quad \text{Calculate the molar fraction of AsF}_3 \text{ at equilibrium} \]

\[\frac{\text{AsF}_3}{\text{AsF}_5} \rightleftharpoons \frac{\text{AsF}_3}{[\text{AsF}_3] + [\text{F}_2]} \]

\[C \times \frac{277}{1000} \]

\[E \times \frac{72}{1000} \]

\[0 \times \frac{277}{1000} \times \frac{277}{1000} \]

\[\text{Since this is not equilibrium, } Q = k \]

\[Q = \frac{277}{1000} \times \frac{277}{1000} \times \frac{277}{1000} \]

\[k = \frac{277}{1000} \times \frac{277}{1000} \times \frac{277}{1000} \]

\[(d) \quad k_{eq} \text{ at } 105^\circ \text{C} = 106 \]

\[(e) \quad \text{Since there are } \frac{277}{1000} \text{ moles of product} \]

\[\text{and } \frac{277}{1000} \text{ is for } \text{F}_2, \text{ the mole fraction of } \text{F}_2(g) \]

\[\Rightarrow \frac{277}{277} = \frac{1}{2} \]
Question 1

Sample: 1A
Score: 10

This response earned all 10 points: 2 for part (a)(i), 2 for part (a)(ii), 1 for part (b), 1 for part (c)(i), 3 for part (c)(ii), and 1 for part (d).

Sample: 1B
Score: 7

Two points were earned in part (a)(i). Only 1 of the 2 points was earned in part (a)(ii); molarity is substituted for \(n \) instead of number of moles, so the substitution point was not earned. The point was earned in part (b). The point was not earned in part (c)(i); number of moles is used in the calculation instead of molarity. In part (c)(ii) 1 point was earned for setting \([\text{AsF}_3] = [\text{F}_2]\), and 1 point was earned for correct calculation of their concentrations, but no point was earned for the calculation because of a math error. The point was earned in part (d).

Sample: 1C
Score: 4

In part (a)(i) 1 point was earned for the correct molar mass, but the second point was not earned because the initial molar concentration is not calculated. In part (a)(ii) 1 point was earned for the correct substitution into \(PV = nRT \). However, the second point was not earned because the incorrect number of significant figures in 0.3 mol results in an incorrect pressure. The point was earned for the correct equation in part (b). The point was not earned in part (c)(i). In part (c)(ii) 1 point was earned for setting \([\text{AsF}_3] = [\text{F}_2]\), but the other 2 points were not earned. The point was not earned in part (d).