AP® CALCULUS BC 2008 SCORING GUIDELINES (Form B)

Question 2

For time $t \ge 0$ hours, let $r(t) = 120(1 - e^{-10t^2})$ represent the speed, in kilometers per hour, at which a car travels along a straight road. The number of liters of gasoline used by the car to travel x kilometers is modeled by $g(x) = 0.05x(1 - e^{-x/2})$.

- (a) How many kilometers does the car travel during the first 2 hours?
- (b) Find the rate of change with respect to time of the number of liters of gasoline used by the car when t = 2 hours. Indicate units of measure.
- (c) How many liters of gasoline have been used by the car when it reaches a speed of 80 kilometers per
- (a) $\int_{0}^{2} r(t) dt = 206.370$ kilometers

(b) $\frac{dg}{dt} = \frac{dg}{dx} \cdot \frac{dx}{dt}$; $\frac{dx}{dt} = r(t)$ $\left. \frac{dg}{dt} \right|_{t=2} = \left. \frac{dg}{dx} \right|_{x=206.370} \cdot r(2)$ = (0.050)(120) = 6 liters/hour

 $3: \begin{cases} 2: \text{ uses chain rule} \\ 1: \text{ answer with units} \end{cases}$

(c) Let T be the time at which the car's speed reaches 80 kilometers per hour.

Then,
$$r(T) = 80$$
 or $T = 0.331453$ hours.

At time *T*, the car has gone
$$x(T) = \int_0^T r(t) dt = 10.794097 \text{ kilometers}$$

and has consumed g(x(T)) = 0.537 liters of gasoline.

4:
$$\begin{cases} 1 : \text{equation } r(t) = 80 \\ 2 : \text{distance integral} \\ 1 : \text{answer} \end{cases}$$

Work for problem 2(a)

Eistance travelled by car during first 2 hours =
$$\int_{8}^{2} r(t) dt$$

= $\int_{0}^{2} 120(1-e^{-rot^{2}}) dt$
= 206.370 km

Work for problem 2(b)

$$g(x) = 0.05x(1-e^{-x/2})$$

Rafe of change w.r.t. If time of $g(x) = \frac{dg(a)}{dt} = 0.05(1-e^{-x/2})r(t) + 0.05x(\frac{1}{2}e^{-x/2})r(t)$

At time $t = 2$ hours, Rate of change w.r.t time of $g(x)$

$$= 0.05(1-e^{(206.37942)})r(2) + 0.05(206.3794(\frac{1}{2}e^{(-206.37942)})r(2)$$

$$= 6 \text{ Lihr.}$$

Do not write beyond this border.

DO HOL WITTE DEVOLUTION THIS DOLUCE.

Work for problem 2(c)

Dividance travelled =
$$\int_0^{0.331} (t) dt$$

= $\int_0^{0.331} (20(1-e^{-10t^2}) dt$
= (0.794 tm)

: Liters of gustine used =
$$g(10.794)$$

= $0.05(10.794)(1 - e^{(10.794/12)})$
= 0.537 L

Do not write beyond this border.

GO ON TO THE NEXT PAGE.

Do not write beyond this border.

Work for problem 2(a)

$$\int_{0}^{2} v(t) = 206.37$$

A. 206.37 km

Work for problem 2(b)

$$g(R(t)) = 0.05 \times (1-e^{-x/2})$$

$$g'(RU) = 0.05e^{-\frac{x}{2}}.(e^{\frac{x}{2}} + 0.5(x-2)).$$

when
$$t=2$$
;
 $X=206.371$ km

A', 0.05 liters per km

שט ווטו איזויב הבאחוות חווז החומבו.

Work for problem 2(c)

$$r(t) = 120 (1-e^{-10t^2}) = 80$$

 $t = -0.33 + 453 \sim 0.33 + 453$

$$R(t) = \int_{0}^{0.331453} Y(t)$$

= 10,7941 km.

A: 0.537 liters

Do not write beyond this border.

GO ON TO THE NEXT PAGE.

Do not write beyond this border.

Work for problem 2(a)

the distance traveled =
$$\int_{0}^{2} r(t) dt$$

= $\int_{0}^{2} 120(1-e^{-10t}) dt = 206.37 \text{ km}$

Work for problem 2(b)

Do not write beyond this border.

Continue problem 2 on page 7.

TO HOL WITE DEVOID THE COLORS

Work for problem 2(c)

at the speed of 80

80 = 120 (1-e-10+2)

ne find (t) and subated it
in the result found in
part of (b)

AP® CALCULUS BC 2008 SCORING COMMENTARY (Form B)

Question 2

Sample: 2A Score: 9

The student earned all 9 points.

Sample: 2B Score: 6

The student earned 6 points: 2 points in part (a), no points in part (b), and 4 points in part (c). The student presents correct work in parts (a) and (c). In part (b) the student attempts to use the chain rule but does not put together the correct pieces necessary to answer the question.

Sample: 2C Score: 3

The student earned 3 points: 2 points in part (a), no points in part (b), and 1 point in part (c). The student presents correct work in part (a). No points were earned in part (b). In part (c) the student sets r(t) = 80 and earned the first point. Since the student does not solve the equation for t, the response did not earn the remaining points.