AP ${ }^{\circledR}$ CALCULUS AB 2008 SCORING GUIDELINES (Form B)

Question 4

The functions f and g are given by $f(x)=\int_{0}^{3 x} \sqrt{4+t^{2}} d t$ and $g(x)=f(\sin x)$.
(a) Find $f^{\prime}(x)$ and $g^{\prime}(x)$.
(b) Write an equation for the line tangent to the graph of $y=g(x)$ at $x=\pi$.
(c) Write, but do not evaluate, an integral expression that represents the maximum value of g on the interval $0 \leq x \leq \pi$. Justify your answer.
(a) $f^{\prime}(x)=3 \sqrt{4+(3 x)^{2}}$

$$
\begin{aligned}
g^{\prime}(x) & =f^{\prime}(\sin x) \cdot \cos x \\
& =3 \sqrt{4+(3 \sin x)^{2}} \cdot \cos x
\end{aligned}
$$

(b) $g(\pi)=0, g^{\prime}(\pi)=-6$

Tangent line: $y=-6(x-\pi)$
(c) For $0<x<\pi, g^{\prime}(x)=0$ only at $x=\frac{\pi}{2}$.
$g(0)=g(\pi)=0$
$g\left(\frac{\pi}{2}\right)=\int_{0}^{3} \sqrt{4+t^{2}} d t>0$
The maximum value of g on $[0, \pi]$ is $\int_{0}^{3} \sqrt{4+t^{2}} d t$.
$4:\left\{\begin{array}{l}2: f^{\prime}(x) \\ 2: g^{\prime}(x)\end{array}\right.$
$2:\left\{\begin{array}{l}1: g(\pi) \text { or } g^{\prime}(\pi) \\ 1: \text { tangent line equation }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { sets } g^{\prime}(x)=0 \\ 1: \text { justifies maximum at } \frac{\pi}{2} \\ 1: \text { integral expression for } g\left(\frac{\pi}{2}\right)\end{array}\right.$

CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems- 3
No calculator is allowed for these problems.

Work for problem 4(a)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\int_{0}^{3 x} \sqrt{4+t^{2}} d t\right] \\
& =3 \sqrt{4+9 x^{2}} \\
\dot{g}^{\prime}(x) & =\frac{d}{d x}\left[\int_{0}^{3 \sin x} \sqrt{4+t^{2}} d t\right] \\
& =3 \cos x \sqrt{4+9 \sin ^{2} x}
\end{aligned}
$$

Work for problem 4(b)

$$
\begin{array}{rlrl}
g^{\prime}(\pi) & =3 \cos \pi \sqrt{4+9 \sin ^{2} \pi} \quad & \quad \text { Equation of tangent line } \\
& =3(-1) \sqrt{4+9(0)} \quad \text { at } x=\pi: \\
& =-3(2) \\
& =-6 \\
g(\pi) & =f(\sin \pi) \\
& =f(0) \\
& =0
\end{array}
$$

Work for problem 4(c)

$$
\begin{gathered}
g^{\prime}(x)=0 \\
3 \cos x \sqrt{4+9 \sin ^{2} x}=0 \\
\Rightarrow 3 \cos x=0 \\
x=\frac{\pi}{2}
\end{gathered}
$$

$x=\frac{\pi}{2}$ is a critical point
Since g is continuous and differentiable on the interval $[0, \pi]$, by Extreme Value Theorem, the global maximum can occur at the critical points or and points

$$
\begin{aligned}
g\left(\frac{\pi}{2}\right) & =f\left(\sin \frac{\pi}{2}\right) \\
& =f(1) \\
& =\int_{0}^{3} \sqrt{4+t^{2}} d t>0 \\
g(\pi) & =f(\sin \pi) \\
& =f(0) \\
& =0 \\
g(0) & =f(\sin 0) \\
& =f(0) \\
& =0
\end{aligned}
$$

CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems -3
No calculator is allowed for these problems.

Work for problem 4(a)

$$
\begin{aligned}
f^{\prime}(x) & =\sqrt{4+(3 x)^{2}} \cdot 3 \\
& =3 \sqrt{4+9 x^{2}} \\
g^{\prime}(x) & =f^{\prime}(\sin x) \cdot(\cos x) \\
& =\cos x \cdot 3 \sqrt{4+9 \sin ^{2} x} \\
& =3 \cos x \sqrt{4+9 \sin ^{2} x}
\end{aligned}
$$

Work for problem 4(b)

$$
\begin{aligned}
& y=m x+b \\
& m=g^{\prime}(\pi)=3 \cos \pi \sqrt{4+9 \sin ^{2} \pi} \\
&=-3 \sqrt{4} \\
&=-6
\end{aligned}
$$

$$
\begin{aligned}
& y=-6 x+b \\
& g(\pi)=f(\sin \pi)=f(0)=\int_{0}^{0} \sqrt{4-t^{2}} d t=0 \\
& 0=-6 \pi+b \\
& b=6 \pi \\
& y=-6 x+6 \pi
\end{aligned}
$$

Work for problem 4(c)

$$
f(x)=\int_{0}^{3 x} \underbrace{\sqrt{4+t^{2}}}_{\text {L the }} d t
$$

Maximum value of g occurs when there is a maximum value of f.
f has its maximum value when $x=\frac{2}{3}$, because the answer will be the area of the quarter circle below.
This area is $=\int_{0}^{2} \sqrt{4+t^{2}} d t$ \therefore The maximum value is above

CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems- $\mathbf{3}$
No calculator is allowed for these problems.

Work for problem 4(a)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x} \int_{0}^{3 x} \sqrt{4+t^{2}} d t=3 \sqrt{4+(3 x)^{2}} \\
& g^{\prime}(x)=f^{\prime}(\sin x)=3 \sqrt{4+(3 \sin x)^{2}}
\end{aligned}
$$

Work for problem 4(b)

$$
\begin{aligned}
& g(\pi)=f(\sin \pi)=f(0)=0 \quad(\pi, 0) \\
& g^{\prime}(\pi)=f^{\prime}(\sin \pi)=3 \sqrt{4+(0)^{2}}=6 .
\end{aligned}
$$

$$
\begin{aligned}
& y-0=6(x-\pi) \\
& y=6 x-6 \pi
\end{aligned}
$$

Work for problem 4(c)

$$
\int_{0}^{\pi} 3 \sqrt{4+(3 \sin x)^{2}} \cdot d x
$$

AP ${ }^{\circledR}$ CALCULUS AB
 2008 SCORING COMMENTARY (Form B)

Question 4

Sample: 4A
 Score: 9

The student earned all 9 points.
Sample: 4B
Score: 6
The student earned 6 points: 4 points in part (a), 2 points in part (b), and no points in part (c). The student presents correct work in parts (a) and (b). In part (c) the student tries to argue from a geometric point of view, but the initial premise is incorrect, so no points were earned.

Sample: 4C

Score: 4
The student earned 4 points: 2 points in part (a), 2 points in part (b), and no points in part (c). In part (a) the student has a correct $f^{\prime}(x)$ but makes a chain rule error in finding $g^{\prime}(x)$ so earned just 2 of the 4 points. In part (b) the student finds $g(\pi)$ correctly and finds a value for $g^{\prime}(\pi)$ based on the incorrect answer in part (a). The student combines these values to form a tangent line equation, earning both points in part (b). The student's work in part (c) did not earn any points.

