AP[®] CALCULUS BC 2007 SCORING GUIDELINES

Question 6

Let f be the function given by $f(x) = e^{-x^2}$.

- (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 0.
- (b) Use your answer to part (a) to find $\lim_{x \to 0} \frac{1 x^2 f(x)}{x^4}$.
- (c) Write the first four nonzero terms of the Taylor series for $\int_0^x e^{-t^2} dt$ about x = 0. Use the first two terms of your answer to estimate $\int_0^{1/2} e^{-t^2} dt$.
- (d) Explain why the estimate found in part (c) differs from the actual value of $\int_{0}^{1/2} e^{-t^2} dt$ by less than $\frac{1}{200}$.

$$\begin{array}{ll} \text{(a)} & e^{-x^2} = 1 + \frac{\left(-x^2\right)^2}{1!} + \frac{\left(-x^2\right)^2}{2!} + \frac{\left(-x^2\right)^3}{3!} + \dots + \frac{\left(-x^2\right)^n}{n!} + \dots \\ & = 1 - x^2 + \frac{x^4}{2} - \frac{x^6}{6} + \dots + \frac{\left(-1\right)^n x^{2n}}{n!} + \dots \\ \text{(b)} & \frac{1 - x^2 - f(x)}{x^4} = -\frac{1}{2} + \frac{x^2}{6} + \frac{\sum_{n=4}^{\infty} \left(-1\right)^{n+1} x^{2n-4}}{n!} \\ & \text{Thus, } \lim_{x \to 0} \left(\frac{1 - x^2 - f(x)}{x^4}\right) = -\frac{1}{2}. \\ \text{(c)} & \int_0^x e^{-t^2} dt = \int_0^x \left(1 - t^2 + \frac{t^4}{2} - \frac{t^6}{6} + \dots + \frac{\left(-1\right)^n t^{2n}}{n!} + \dots\right) dt \\ & = x - \frac{x^3}{3} + \frac{x^5}{10} - \frac{x^7}{42} + \dots \\ & \text{Using the first two terms of this series, we estimate that} \\ & \int_0^{1/2} e^{-t^2} dt \approx \frac{1}{2} - \left(\frac{1}{3}\right) \left(\frac{1}{8}\right) = \frac{11}{24}. \\ \text{(d)} & \left|\int_0^{1/2} e^{-t^2} dt = \sum_{n=0}^{\infty} \frac{\left(-1\right)^n \left(\frac{1}{2}\right)^{2n+1}}{n! (2n+1)}, \text{ which is an alternating} \\ & \text{series with individual terms that decrease in absolute value to 0. } \end{array} \right| \begin{array}{l} 1 : \text{ two of } 1, -x^2, \frac{x^4}{2}, -\frac{x^6}{6} \\ 1 : \text{ remaining terms} \\ 1 : \text{ general term} \\ 1 : \text{ answer} \\ 1 : \text{ answer} \\ 1 : \text{ answer} \\ 1 : \text{ two terms} \\ 1 : \text{ estimate} \\ 2 : \begin{cases} 1 : \text{ uses the third term as} \\ 1 : \text{ explanation} \\ 1 : \text{ explanation} \end{cases}$$

© 2007 The College Board. All rights reserved.

Continue problem 6 on page 15.

©2007 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

6 6 NO CALCULATOR ALLOWED Work for problem 6(c) $\int_{0}^{x} e^{-t^{2}} dt = 0 + x - \frac{x^{3}}{3 \cdot l!} + \frac{x^{5}}{5 \cdot 2!} - \frac{x^{7}}{7 \cdot 3!} + \dots + \frac{(-l)^{n} x^{2n+l}}{(2n+l) n!} + \dots$ $\int e^{t^{2}} e^{-t^{2}} dt = \frac{t^{2}}{2} - \frac{t^{2}}{24} = \frac{t^{2}}{24}$ Taulat Xarr = 0 < 1 it is converges for all X (including 1/2) Do not write beyond this border Do not write beyond this border. Work for problem 6(d) the taylor series for $\int_{0}^{\infty} e^{-t^{2}} dt$ is an alternating series (1) ath term goes to 0 lim (2) = 0 / Ath term goes to 0 lim (2) = 0 / Ath term goes to 0 lim (2) = 0 / numerator bereased $|a_{A}| = \frac{1}{2} \frac{(2n+1)}{(2n+1)n!} > \frac{1}{(2n+1)n!} = \frac{1}{(2n+1)n!} + \frac{1}{(2n+1)n!}$ (5) $|F| < |a_{nn}| =$: E < 1/200

GO ON TO THE NEXT PAGE.

-15-

©2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Continue problem 6 on page 15

6 6 6 h NO CALCULATOR ALLOWED 6<u>B</u> Work for problem 6(c) $\int_{10}^{10} x - \frac{x^3}{2} + \frac{x^5}{10} \frac{1}{2} - \frac{(\frac{1}{2})^3}{3} - 0 - \frac{(0)^3}{3}$ ∫"a f⊗) Z 12-24 Do not write beyond this border. Do not write beyond this border. 1 11/24 Work for problem 6(d) The staylor series is alternating, the error To less than the ntl term because Termntl < Term n and lim of terms = 0 as I said It's alternating I said I said It's alternating I said I s and Error 2 h+1 term 50 4 3rd ferm lerror 4 GO ON TO THE NEXT PAGE.

©2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

NO CALCULATOR ALLOWED

h

6

6

66,

Continue problem 6 on page 15.

©2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

6

6

Do not write beyond this border.

6

6 NO CALCULATOR ALLOWED

6

6

662

Work for problem 6(c) $e^{-\chi^2} = 1 - \chi^2 + \frac{\chi^5}{21} - \frac{\chi^4}{31}$ $\int_{-\infty}^{\infty} e^{-t^2} = \chi - \frac{\chi^3}{3} + \frac{\chi^4}{4\cdot 2!} - \frac{\chi^5}{5\cdot 3!}$ $\int_{a}^{b} u dt = \left[\chi - \frac{\chi^{3}}{3} \right]_{b}^{b} = \frac{1}{2} - \frac{(\frac{1}{2})^{3}}{3} - \frac{1}{2} - \frac{1}{3}$ Do not write beyond this border. 111 1 7-1 Work for problem 6(d) heret term in the services 15 used to Find the error in a taylor polynomial. For this one It is X" 4,21-By plugging in (0.1) for X, te error a value less than 1/200. 13 $\frac{(0,1)^{4}}{200}$

GO ON TO THE NEXT PAGE.

-15-

AP[®] CALCULUS BC 2007 SCORING COMMENTARY

Question 6

Overview

This problem dealt with Taylor series. Part (a) assessed students' abilities to find the first four nonzero terms and the general term of the Taylor series for $f(x) = e^{-x^2}$. Although it would be possible to do this by computing derivatives of the function *f*, it was expected that students would start with the known Taylor series for the

exponential function and use substitution. Part (b) asked for a limit of an indeterminate form $\left(\frac{0}{0}\right)$ involving the

function f. Students were asked to use their answer about the Taylor series for f rather than using repeated applications of L'Hospital's Rule. Part (c) required students to formally manipulate the Taylor series for f in a way that could be used to estimate the value of a definite integral. Part (d) asked students to explain why the value

of the estimate differed from the actual value of the definite integral by less than $\frac{1}{200}$. This question tested

whether students could correctly use and justify the error bound for an alternating series whose terms are decreasing in absolute value to zero.

Sample: 6A Score: 9

The student earned all 9 points.

Sample: 6B Score: 6

The student earned 6 points: 3 points in part (a), no points in part (b), 2 points in part (c), and 1 point in part (d). In part (a) the student has the first four nonzero terms and the correct general term so the first 3 points were earned. In part (b) none of the student's work earned any points. In part (c) the student makes an error in antidifferentiating the last term so only the first point for two terms was earned. The estimation is correct and earned the third point. In

part (d) the student uses the third term as an error bound and successfully calculates $\frac{1}{320}$, and thus the first point

was earned. The second point was not earned since the student explains that this is an alternating series but does not observe that the individual terms decrease in absolute value to 0.

Sample: 6C Score: 4

The student earned 4 points: 1 point in part (a), no points in part (b), 3 points in part (c), and no points in part (d). In part (a) the student earned the first point for $1 - x^2$. The other terms are incorrect, and there is no general term so no other points were earned. In part (b), since the student's limit does not exist, the student was not eligible for the point. In part (c) the student correctly antidifferentiates the polynomial from part (a) so earned the first 2 points. The student's correct estimation earned the third point. In part (d) none of the student's work earned any points.