AP ${ }^{\circledR}$ CALCULUS AB
 2007 SCORING GUIDELINES

Question 4

A particle moves along the x-axis with position at time t given by $x(t)=e^{-t} \sin t$ for $0 \leq t \leq 2 \pi$.
(a) Find the time t at which the particle is farthest to the left. Justify your answer.
(b) Find the value of the constant A for which $x(t)$ satisfies the equation $A x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0$ for $0<t<2 \pi$.
(a) $x^{\prime}(t)=-e^{-t} \sin t+e^{-t} \cos t=e^{-t}(\cos t-\sin t)$ $x^{\prime}(t)=0$ when $\cos t=\sin t$. Therefore, $x^{\prime}(t)=0$ on $0 \leq t \leq 2 \pi$ for $t=\frac{\pi}{4}$ and $t=\frac{5 \pi}{4}$.
The candidates for the absolute minimum are at $t=0, \frac{\pi}{4}, \frac{5 \pi}{4}$, and 2π.

t	$x(t)$
0	$e^{0} \sin (0)=0$
$\frac{\pi}{4}$	$e^{-\frac{\pi}{4}} \sin \left(\frac{\pi}{4}\right)>0$
$\frac{5 \pi}{4}$	$e^{-\frac{5 \pi}{4}} \sin \left(\frac{5 \pi}{4}\right)<0$
2π	$e^{-2 \pi} \sin (2 \pi)=0$

The particle is farthest to the left when $t=\frac{5 \pi}{4}$.
(b) $x^{\prime \prime}(t)=-e^{-t}(\cos t-\sin t)+e^{-t}(-\sin t-\cos t)$ $=-2 e^{-t} \cos t$
$A x^{\prime \prime}(t)+x^{\prime}(t)+x(t)$
$=A\left(-2 e^{-t} \cos t\right)+e^{-t}(\cos t-\sin t)+e^{-t} \sin t$
$=(-2 A+1) e^{-t} \cos t$
$=0$
Therefore, $A=\frac{1}{2}$.
$5:\left\{\begin{array}{l}2: x^{\prime}(t) \\ 1: \text { sets } x^{\prime}(t)=0 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$4:\left\{\begin{array}{l}2: x^{\prime \prime}(t) \\ 1: \text { substitutes } x^{\prime \prime}(t), x^{\prime}(t), \text { and } x(t) \\ \quad \text { into } A x^{\prime \prime}(t)+x^{\prime}(t)+x(t) \\ 1: \text { answer }\end{array}\right.$

NO CALCULATOR ALLOWED
CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems- $\mathbf{3}$
No calculator is allowed for these problems.

Work for problem 4(a)

$$
\begin{aligned}
x(t) & =e^{-t} \sin t \\
v(t) & =e^{-t} \cos t+\sin t e^{-t} \cdot-1 \\
v(t) & =e^{-t}(\cos t-\sin t) \\
0 & =e^{-t}(\cos t-\sin t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { cost: } \sin t \\
& t=\frac{\pi}{4} \quad t=\frac{5 \pi}{4}
\end{aligned}
$$

$$
\begin{array}{l|l}
t & x(t) \\
\hline 0 & 0 \\
\frac{\pi}{4} & -\frac{\sqrt{2}}{2} e^{-\frac{\pi}{4}} \\
\frac{5 \pi}{4} & -\frac{\sqrt{2}}{2} e^{-\frac{5 \pi}{4}} \\
2 \pi & 0
\end{array}
$$

Work for problem 4(b)

$$
\begin{gathered}
x(t)=e^{-t} \sin t \quad x^{\prime}(t)=e^{-t} \cos t-e^{-t} \sin t \\
x^{\prime \prime}(t)=-e^{-t} \sin t-\cos t e^{-t}-\left(e^{-t} \cos t-e^{-t} \sin t\right) \\
x^{\prime \prime}(t)=-e^{-t} \sin t-e^{-t} \cos t-e^{-t} \cos t \pm e^{-t} \sin t \\
x^{\prime \prime}(t)=-2 e^{-t} \cos t \\
A x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0 \\
A\left(-2 e^{-t} \cos t\right)+e^{-t} \cos t-e^{-t} \sin t+e^{-t} \sin t=0 \\
-2 A e^{-t} \cos t+e^{-t} \cos t=0 \\
e^{-t} \cos t(-2 A+1)=0 \\
A=\frac{-1}{2} \\
A=\frac{1}{2}
\end{gathered}
$$

$\begin{array}{lllllllllll}4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 B_{1}\end{array}$

 NO CALCULATOR ALLOWEDCALCULUS AB
SECTION II, Part B
Time- $\mathbf{4 5}$ minutes
Number of problems- 3
No calculator is allowed for these problems.

Work for problem 4(b)

$$
\begin{gathered}
v(t)=e^{-t}(\cos t-\sin t) \\
x^{\prime \prime}(t)=e^{-t}(-\sin t-\cos t)+(\cos t-\sin t)\left(e^{-t}\right)(-1) \\
e^{-t}(-\sin t-\cos t)-e^{-t}(\cos t-2 i n t) \\
e^{-t}\left(-\sin ^{2} t-\cos t-\cos t+\sin t\right) \\
e^{-t}(-2 \cos t) \\
A e^{-t}(-2 \cos t)+e^{-t}(\cos t-\sin t)+e^{-t} \sin t=0 \\
A e^{-t}(-2 \cos t+\cos t-2 \sin t+\sin t)=0 \\
A e^{-t}(\cos t)=0 \quad[0,21]
\end{gathered}
$$

CALCULUS AB
SECTION II, Part B
Time- 45 minutes
Number of problems- 3
No calculator is allowed for these problems.

Work for problem 4(a)

$$
\begin{aligned}
x^{\prime}(t) \text { or } v(t) & =e^{-t}(\cos t)+\sin t\left(e^{-t}-1\right) \\
& =e^{-t} \cos t-e^{-t} \sin t \\
& =e^{-t}(\cos t-\sin t)
\end{aligned}
$$

Work for problem 4(b)

$$
\begin{aligned}
& x^{\prime}(t)=e^{-t}(\cos t-\sin t) \\
& x^{\prime \prime}(t)=e^{-t}(-\sin t-\cos t)+(\cos t-\sin t)\left(e^{-t}\right)(-1) \\
&=e^{-t}(-\sin t-\cos t)-e^{-t}(\cos t-\sin t) \\
&=e^{-t}(-\sin t-\cos t-\cos t+\sin t) \\
&=e^{-t}(-2 \cos t) \\
&=-2 e^{-t} \cos t \\
& A\left(e^{-t} \sin t\right)+\left(e^{-t}(\cos t-\sin t)\right)-2 e^{-t} \cos t=0 \\
& A\left(e^{-t} \sin t+e^{-t} \cos t-e^{-t} \sin t-2 e^{-t} \cos t\right)=0 \\
& A(\left.-1 e^{-t} \cos t\right)=0
\end{aligned}
$$

AP ${ }^{\circledR}$ CALCULUS AB
 2007 SCORING COMMENTARY

Question 4

Overview

This problem presented students with a function $x(t)$ describing the position of a particle at time t moving along the x-axis over a closed time interval. Part (a) asked for the time, with justification, when the particle was farthest to the left during this time interval. The first derivative of $x(t)$ was required to compute the time and complete the justification. Part (b) required students to substitute the function and the first and second derivatives of $x(t)$ into the equation $A x^{\prime \prime}(t)+x^{\prime}(t)+x(t)=0$ to find the value of A. Students did not have to solve the differential equation to determine the value of A.

Sample: 4A

Score: 9

The student earned all 9 points.

Sample: 4B

Score: 6

The student earned 6 points: 3 points in part (a) and 3 points in part (b). In part (a) the student earned 2 points for $x^{\prime}(t)$ and 1 point for setting $x^{\prime}(t)=0$. In part (b) the student earned 2 points for $x^{\prime \prime}(t)$ and 1 point for the correct substitution. The student does not solve for A and thus did not earn the answer point.

Sample: 4C

Score: 4

The student earned 4 points: 2 points in part (a) and 2 points in part (b). In part (a) the student earned 2 points for $x^{\prime}(t)$. In part (b) the student earned 2 points for $x^{\prime \prime}(t)$. The student incorrectly substitutes for $x^{\prime \prime}(t)$ and does not solve for A.

