AP ${ }^{\circledR}$ CALCULUS AB 2007 SCORING GUIDELINES (Form B)

Question 6

Let f be a twice-differentiable function such that $f(2)=5$ and $f(5)=2$. Let g be the function given by $g(x)=f(f(x))$.
(a) Explain why there must be a value c for $2<c<5$ such that $f^{\prime}(c)=-1$.
(b) Show that $g^{\prime}(2)=g^{\prime}(5)$. Use this result to explain why there must be a value k for $2<k<5$ such that $g^{\prime \prime}(k)=0$.
(c) Show that if $f^{\prime \prime}(x)=0$ for all x, then the graph of g does not have a point of inflection.
(d) Let $h(x)=f(x)-x$. Explain why there must be a value r for $2<r<5$ such that $h(r)=0$.
(a) The Mean Value Theorem guarantees that there is a value c, with $2<c<5$, so that

$$
f^{\prime}(c)=\frac{f(5)-f(2)}{5-2}=\frac{2-5}{5-2}=-1 .
$$

(b) $\quad g^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$
$g^{\prime}(2)=f^{\prime}(f(2)) \cdot f^{\prime}(2)=f^{\prime}(5) \cdot f^{\prime}(2)$
$g^{\prime}(5)=f^{\prime}(f(5)) \cdot f^{\prime}(5)=f^{\prime}(2) \cdot f^{\prime}(5)$
Thus, $g^{\prime}(2)=g^{\prime}(5)$.
Since f is twice-differentiable, g^{\prime} is differentiable everywhere, so the Mean Value Theorem applied to g^{\prime} on [2,5] guarantees there is a value k, with $2<k<5$, such that $g^{\prime \prime}(k)=\frac{g^{\prime}(5)-g^{\prime}(2)}{5-2}=0$.
(c) $\quad g^{\prime \prime}(x)=f^{\prime \prime}(f(x)) \cdot f^{\prime}(x) \cdot f^{\prime}(x)+f^{\prime}(f(x)) \cdot f^{\prime \prime}(x)$ If $f^{\prime \prime}(x)=0$ for all x, then $g^{\prime \prime}(x)=0 \cdot f^{\prime}(x) \cdot f^{\prime}(x)+f^{\prime}(f(x)) \cdot 0=0$ for all x.
Thus, there is no x-value at which $g^{\prime \prime}(x)$ changes sign, so the graph of g has no inflection points. OR
If $f^{\prime \prime}(x)=0$ for all x, then f is linear, so $g=f \circ f$ is linear and the graph of g has no inflection points.
(d) Let $h(x)=f(x)-x$.
$h(2)=f(2)-2=5-2=3$
$h(5)=f(5)-5=2-5=-3$
Since $h(2)>0>h(5)$, the Intermediate Value Theorem guarantees that there is a value r, with $2<r<5$, such that $h(r)=0$.
$2:\left\{\begin{array}{l}1: \frac{f(5)-f(2)}{5-2} \\ 1: \text { conclusion, using MVT }\end{array}\right.$
$3:\left\{\begin{array}{l}1: g^{\prime}(x) \\ 1: g^{\prime}(2)=f^{\prime}(5) \cdot f^{\prime}(2)=g^{\prime}(5) \\ 1: \text { uses MVT with } g^{\prime}\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers } g^{\prime \prime} \\ 1: g^{\prime \prime}(x)=0 \text { for all } x\end{array}\right.$

OR
$2:\left\{\begin{array}{l}1: f \text { is linear } \\ 1: g \text { is linear }\end{array}\right.$
$2:\left\{\begin{array}{l}1: h(2) \text { and } h(5) \\ 1: \text { conclusion, using IVT }\end{array}\right.$

Work for problem 6(a)

$$
\begin{aligned}
& f^{\prime}(c)=-1 \quad \text { interval }=(2,5) \\
& \frac{f(5)-f(2)}{5-2}=\frac{2-5}{3}=-1 \\
& f^{\prime}(c)=-1
\end{aligned}
$$

According to the Mean Vale Theacm, there must exist some c, such that $f^{\prime}(c)=-1$

Work for problem 6(b)

$$
\begin{aligned}
& g(x)=f(f(x)) \\
& g^{\prime}(x)=f^{\prime}(f(x)) f^{\prime}(x)^{\prime} \text { (chain Rule } \\
& g^{\prime}(2)=f^{\prime}(f(2)) f^{\prime}(2) \quad g^{\prime}(5)=f^{\prime}(f(5)) f^{\prime}(5) \\
& g^{\prime}(2)=f^{\prime}(5) f^{\prime}(2) \quad g^{\prime}(5)=f^{\prime}(2) f^{\prime}(5 \\
& f^{\prime}(5) f^{\prime}(2)=f^{\prime}(2) f^{\prime}(5) \\
& \therefore g^{\prime}(2)=g^{\prime}(5)
\end{aligned}
$$

Mean : $g^{\prime}(5)-g^{\prime}(2)=\frac{0}{2}=0$, therefore, there mut exist
Theorem sore k within $2<k<5$ where $g^{\prime \prime}(k)=0$

Work for problem 6(c)
$f^{\prime \prime}(x)=0$ for all x
pt of inflection on g is where $g^{\prime \prime}=0$

$$
g^{\prime \prime}(x)=f^{\prime \prime}\left(f^{\prime}(f(x)) f^{\prime}(x)+f^{\prime}(f(x)) f^{\prime \prime}(x)\right.
$$

If $f^{\prime \prime}=0$, the

$$
g^{\prime \prime}(x): 0+0
$$

$=0$, for every x, meaning there is no point on g where the gaph change concavity.

Work for problem 6(d)

$$
h(x)=f(x)-x
$$

$$
(2,5)
$$

$$
\begin{aligned}
h(2) & =f(2)-2 \\
& =5-2=3 \\
h(5) & =f(5)-5 \\
& =2-5=-3
\end{aligned}
$$

Because the value have opposite signs, according the Intermediate Valve Theorem, there must exist suomi number r such that $h(r)=0$
The function is continuow (twice-differentiable") and because it her coordinate above and blow the xe .reive there must exist -omer.

Work for problem 6(a)

$$
\begin{array}{rl}
\because f(2)=5 & f(5)=2 \\
& f^{\prime}(c) \\
=\frac{f(5)-f(2)}{5-2} \\
& =\frac{2-5}{5-2}=-1 \quad \text { (Mean Value Thar om) }
\end{array}
$$

Work for problem 6(b)

$$
\begin{aligned}
& g^{\prime}(x)=f^{\prime}(f(x)), f^{\prime}(x) \\
& g^{\prime}(2)=f^{\prime}(f(2)), f^{\prime}(2)
\end{aligned}\left\{\begin{array}{l}
g^{\prime} \text { is differ problem 6(b) } \\
g^{\prime}(2)=g^{\prime}(5) \\
d^{\prime} \text { is conte on interval }[2,5]
\end{array}\right.
$$

$g^{\prime}(5)=f^{\prime}(f(5)) \cdot f^{\prime}(5)$, there is a value k for $2<k<5$

$$
\begin{aligned}
& f(2)=5 \quad f(5)=2 \\
& g^{\prime}(2)=f^{\prime}(5) \cdot f^{\prime}(2) \\
& g^{\prime}(5)=f^{\prime}(2) \cdot f^{\prime}(5) \\
& \therefore g^{\prime}(2)=g^{\prime}(5)
\end{aligned}
$$

Work for problem 6(c)

$$
\begin{array}{rlr}
g^{\prime} & =f^{\prime}(f(x)) \cdot f^{\prime}(x) & f^{\prime \prime}(x)=0 \\
g^{\prime \prime} & =f^{\prime}(x) \cdot f^{\prime \prime}(f(x)) \cdot f^{\prime}(x)+f^{\prime \prime}(x) f^{\prime}(f(x)) \\
& =\left(f^{\prime}(x)\right)^{2} \cdot f^{\prime \prime}(f(x)) &
\end{array}
$$

$\because \exists^{\prime \prime}$ not equal to zero
i the graph of g does not have a point of inflection

Work for problem 6(d)

$$
\begin{aligned}
& h(2)=f(2)-2=3 \\
& h(5)=f(5)-2=3
\end{aligned}
$$

and h is differentiable on $[2,5]$
therefore, there must be a value r for $2<r<5$
Such that $h(r)=0$

Work for problem (a)

$$
\frac{f(5)-f(2)}{5-2}=\frac{2-5}{3}=\frac{-3}{3}=-1
$$

because the function is twice differentiable and from the mean value the nom

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a}=f(c) \\
= & \frac{f(5)-f(2)}{5-2}=\frac{2-5}{3}=\frac{-3}{3}=-1=f(c)
\end{aligned}
$$

Work for problem 6(b)

$$
\begin{aligned}
& g(2)=f(f(\text { D) }) \\
& g(2)=f(5)=g(2)=2 \\
& g(5)=f(f(5))
\end{aligned}
$$

because the function is one to one function that means-that the function is either decrease or increase betweem $(2,5)$, and it should concave up or down sand f is twice differentiable.

Work for problem 6(c)

$$
f^{\prime}(x)=0
$$

that means the graph dost change in concavity, (second derivative is constant), inflection points might be found only when $f(x)$ changes its sign.

Work for problem 6(d)

$$
h(x)=f(x)-x
$$

$$
\begin{aligned}
& h(5)=f(5)-5=2-5=-3 \\
& h(2)=f(2)-2=5-2-3
\end{aligned}
$$

from hollis Therm, we have two numbers where the function changes its sign so the must be (r where $h(r)=0$

AP ${ }^{\circledR}$ CALCULUS AB
 2007 SCORING COMMENTARY (Form B)

Question 6

Sample: 6A

Score: 8
The student earned 8 points: 2 points in part (a), 3 points in part (b), 1 point in part (c), and 2 points in part (d). The student presents correct work in parts (a), (b), and (d). In part (c) the student earned the first point for considering $g^{\prime \prime}(x)$. The student makes an error in determining $g^{\prime \prime}(x)$, and so the second point was not earned. Very few students earned all 9 points.

Sample: 6B

Score: 6
The student earned 6 points: 2 points in part (a), 3 points in part (b), 1 point in part (c), and no points in part (d). The student presents correct work in parts (a) and (b). In part (c) the student correctly finds $g^{\prime \prime}(x)$ and earned the first point. The second point was not earned since the student concludes that $g^{\prime \prime}(x)$ does not equal 0 . In part (d) the student does not have the correct value for $h(5)$, so the first point was not earned. Since 0 is not between the student's values of $h(2)$ and $h(5)$, the student was not eligible for the second point.

Sample: 6C
Score: 3
The student earned 3 points: 2 points in part (a), no points in part (b), no points in part (c), and 1 point in part (d). Correct work is presented in part (a). In part (b) the student writes about the function g and not g^{\prime}. In part (c) the student does not refer to $g^{\prime \prime}$. In part (d) 1 point was earned for $h(2)$ and $h(5)$. The student appeals to Rolle's Theorem instead of the Intermediate Value Theorem, and so the second point was not earned.

