AP ${ }^{\circledR}$ CALCULUS AB 2007 SCORING GUIDELINES (Form B)

Question 2

A particle moves along the x-axis so that its velocity v at time $t \geq 0$ is given by $v(t)=\sin \left(t^{2}\right)$. The graph of v is shown above for $0 \leq t \leq \sqrt{5 \pi}$. The position of the particle at time t is $x(t)$ and its position at time $t=0$ is $x(0)=5$.
(a) Find the acceleration of the particle at time $t=3$.
(b) Find the total distance traveled by the particle from time $t=0$ to $t=3$.
(c) Find the position of the particle at time $t=3$.
(d) For $0 \leq t \leq \sqrt{5 \pi}$, find the time t at which the particle
 is farthest to the right. Explain your answer.
(a) $a(3)=v^{\prime}(3)=6 \cos 9=-5.466$ or -5.467
(b) Distance $=\int_{0}^{3}|v(t)| d t=1.702$

OR
For $0<t<3, v(t)=0$ when $t=\sqrt{\pi}=1.77245$ and
$t=\sqrt{2 \pi}=2.50663$
$x(0)=5$
$x(\sqrt{\pi})=5+\int_{0}^{\sqrt{\pi}} v(t) d t=5.89483$
$x(\sqrt{2 \pi})=5+\int_{0}^{\sqrt{2 \pi}} v(t) d t=5.43041$
$x(3)=5+\int_{0}^{3} v(t) d t=5.77356$
$|x(\sqrt{\pi})-x(0)|+|x(\sqrt{2 \pi})-x(\sqrt{\pi})|+|x(3)-x(\sqrt{2 \pi})|=1.702$
(c) $x(3)=5+\int_{0}^{3} v(t) d t=5.773$ or 5.774
(d) The particle's rightmost position occurs at time $t=\sqrt{\pi}=1.772$.

The particle changes from moving right to moving left at those times t for which $v(t)=0$ with $v(t)$ changing from positive to negative, namely at $t=\sqrt{\pi}, \sqrt{3 \pi}, \sqrt{5 \pi}(t=1.772,3.070,3.963)$.
Using $x(T)=5+\int_{0}^{T} v(t) d t$, the particle's positions at the times it changes from rightward to leftward movement are:
$T: ~ 0 \quad \sqrt{\pi} \quad \sqrt{3 \pi} \quad \sqrt{5 \pi}$
$\begin{array}{lllll}x(T): & 5 & 5.895 & 5.788 & 5.752\end{array}$
The particle is farthest to the right when $T=\sqrt{\pi}$.
$1: a(3)$
$2:\left\{\begin{array}{l}1: \text { setup } \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}2\left\{\begin{array}{l}1: \text { integrand } \\ 1: \text { uses } x(0)=5\end{array}\right. \\ 1: \text { answer }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \operatorname{sets} v(t)=0 \\ 1: \text { answer } \\ 1: \text { reason }\end{array}\right.$

Work for problem 2(a)

$$
\begin{aligned}
a(t)=v^{\prime}(t) & =\cos \left(t^{2}\right)(2 t) \\
& =2 t \cos \left(t^{2}\right) \\
a(3) & =6 \cos 9=-5.467
\end{aligned}
$$

Work for problem 2(b)
The object reverses direction twice before $t=3$.

$$
\begin{aligned}
v(t)=\sin \left(t^{2}\right) & =0 \\
t & =\{1.772,2.507\}
\end{aligned}
$$

Distance traveled $=\left|\int_{0}^{1.772} v(t) d t\right|+\left|\int_{1.772}^{2.507} v(t) d t\right|+\left|\int_{2.507}^{3} v(t) d t\right|$

$$
=0.895+0.464+0.343
$$

$$
=1.702
$$

22

Work for problem 2(c)

Position at $t=3$ is the initial position plus net distance traveled.

$$
\begin{aligned}
x(3) & =x(0)+\int_{0}^{3} v(t) d t \\
& =5+0.774 \\
& =5.774
\end{aligned}
$$

Work for problem 2(d)

When the object reaches night and reverses direction, $x(t)$ has reached a relative maximum.
$\therefore v(t)=0$ for which $v(t)$ changes from tee to $-v e$,

$$
t=\{1.772,3.070,3.963\}
$$

Comparing $x\left(t_{i}\right)=\int_{0}^{t_{t}} v(t) d t+5=$

t_{1}	x
1.772	5.895
3.070	5.788
3.963	5.752

\therefore As t increases, the maximum displacement to the right decreases.
$\therefore x(t)$ has an absolute maximum at $t=1.772$.
\therefore The object is farthest right at $t=1.772$.

Work for problem 2(a)
Acceleration: $a(t) \rightarrow{ }^{2}$ charge of relvcity $=v^{\prime}(t)$
$\therefore a(t)=\left(\sin \left(t^{2}\right)\right)^{\prime}=2+\cos t$
$a(3)=2(3) \cdot \cos (3)=6 \cos 3 \imath-5.940$

Do not write beyond this border.

2

 2
 2

Work for problem 2(c)

Because ital position -5 , the porter $\mathrm{Nt}+3$ is
$5+\int_{0}^{3} \sin t^{2} d t=5.774$

Work for problem 2(d)
when $t=\sqrt{\pi}$, the value of $\int_{0}^{t} v(t) d t$ becomes the greatest So, the particle is farthest to the right when $t=\sqrt{\pi}$

-7-

Work for problem 2(a)

$$
\begin{aligned}
& a=\frac{d v}{d t}=\frac{d \sin t^{2}}{d t}=2 t \cos t^{2} \\
& a(3)=6 \cos 6^{2}=-0.767 \text { unit } / s^{2}
\end{aligned}
$$

The particle is decelerating

Work for problem 2(b)

$$
\begin{aligned}
d i s=x(t) & =\int_{0}^{3} 8 v(t)=\int_{0}^{3} \sin \left(t^{2}\right) d t \\
& =0.774 \text { unit. }
\end{aligned}
$$

Work for problem 2(c)

$$
\begin{aligned}
& x(t)=\int_{5} \sin \left(t^{2}\right) d t \\
& x(t)=\frac{-1005}{2 t}\left(t^{2}\right)+c \quad x(0)=5 \\
& 5=c \\
& x(t)=-\frac{\cos t^{2}}{2 t}+5 \\
& x(3)=5.152 \text { unit. }
\end{aligned}
$$

Work for problem 2(d)
It is farthest to the right at $\sqrt{\pi}$ as area above the graph is queaier than ike area below the graph.

AP ${ }^{\circledR}$ CALCULUS AB
 2007 SCORING COMMENTARY (Form B)

Question 2

Sample: 2A

Score: 9

The student earned all 9 points.

Sample: 2B

Score: 6

The student earned 6 points: no points in part (a), 2 points in part (b), 3 points in part (c), and 1 point in part (d). Correct work is presented in parts (b) and (c). In part (a) the student did not earn the first point because the derivative of $v(t)$ is incorrect. The student could have used the graphing calculator to find the numerical derivative. In part (d) the student does not set $v(t)=0$, so the first point was not earned. The answer point was earned but not the reason point since the student does not explicitly rule out the other times for which $v(t)=0$.

Sample: 2C

Score: 3
The student earned 3 points: no points in part (a), no points in part (b), 2 points in part (c), and 1 point in part (d). In part (a) the derivative of $v(t)$ is correct, but the student makes an error when evaluating the acceleration at $t=3$. In part (b) the student integrates the velocity to find displacement instead of integrating the speed to find distance traveled. In this case, since the particle changes direction on the interval from $t=0$ to $t=3$, displacement is not the same as distance traveled. In part (c) the student has a correct integrand and uses $x(0)=5$, which earned the first 2 points. The student attempts to find the antiderivative of $v(t)$ but did not earn the last point. In part (d) the student does not set $v(t)=0$, so the first point was not earned. The answer point was earned but not the reason point since the student does not explicitly rule out the other times when $v(t)=0$.

