AP[®] PHYSICS B 2006 SCORING GUIDELINES (Form B)

Question 2	2
------------	---

15 points total		Distribution of points
(a)	4 points	r
	For any use of conservation of energy For example, initially the small block has only potential energy, and it is all converted to kinetic energy when it reaches the bottom of the ramp.	1 point
	For a correct expression for the initial potential energy	1 point
	For a correct expression for the kinetic energy at the bottom of the ramp	1 point
	$Mgh = \frac{1}{2}M(3.5v_0)^2$	
	For the correct answer	1 point
	$h = \frac{3.5^2}{2} \frac{v_0^2}{g}$ or equivalent	
(b)	4 points	
	For any use of conservation of momentum	1 point
	For a correct expression for the initial momentum of the blocks	1 point
	For a correct expression for the final momentum of the blocks $M(3.5v_0) = Mv + (1.5M)(2v_0)$	I point
	$\nu = 3.5\nu_0 - 3\nu_0$	
	For the correct answer $v = 0.5v_0$	1 point
(c)	4 points	
	For a correct relationship between friction and the acceleration of the block $\sum F = ma = f_{fric}$	1 point
	For a correct kinematic equation relating acceleration and distance that does not contain time	1 point
	$v_f^2 = v_i^2 - 2aD$	
	For using the correct initial speed of the block	1 point
	$0 = 4v_0^2 - 2aD$	
	$a = 2v_0^2/D$	
	Substituting expressions for a and f into the first equation above	
	$(1.5M)2v_0^2/D = \mu(1.5M)g$	
	For the correct answer	1 point
	$\mu = 2v_0^2 / Dg$	

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] PHYSICS B 2006 SCORING GUIDELINES (Form B)

Question 2 (continued)

(c)	(continued)	Distribution of points
	Alternate solution	Alternate points
	For any indication that the work done on the block as it slides is equal to its initial kinetic energy	1 point
	$f_{fric}d = \frac{1}{2}mv_i^2$	
	For a correct expression for the work done on the block	1 point
	For a correct expression for the initial kinetic energy of the block	1 point
	$\mu(1.5M)gD = \frac{1}{2}(1.5M)(2v_0)^2$	
	For the correct answer	1 point
	$\mu = \frac{2v_0^2}{Dg}$	
(d)	3 points	
	For indicating that the collision is inelastic	1 point
	For indicating that the reason it is inelastic is because the change in kinetic energy	1 point

For indicating that the reason it is inelastic is because the change in kinetic energy	l point
is not zero, or because kinetic energy is lost in the collision	
For showing that the change in kinetic energy is not zero	1 point
$\Delta K = K_f - K_i = \left[\frac{1}{2}M(0.5v_0)^2 + \frac{1}{2}(1.5M)(2v_0)^2\right] - \frac{1}{2}M(3.5v_0)^2$	

$$\Delta K = -3Mv_0^2$$

2. (15 points)

A small block of mass M is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed $3.5v_0$ when it collides with a larger block of mass 1.5M at rest at the bottom of the incline. The larger block moves to the right at a speed $2v_0$ immediately after the collision. Express your answers to the following questions in terms of the given quantities and fundamental constants.

(a) Determine the height h of the ramp from which the small block was released.

By the concervation of energy:
The decrease in potential energy = The increase in kinetic energy

$$Mgh = \frac{1}{2}MU^2 \Rightarrow Mgh = \frac{1}{2}M(3.5v_0)^2$$

 $\therefore h = \frac{\frac{1}{2}(3.5v_0)^2}{g}$
 $= \frac{49v_0^2}{8g}$

(b) Determine the speed of the small block after the collision.

Since there is no external force; the total linear momentum is conserved:

$$M \cdot V_1 + (SM \cdot V_2 = M \cdot V_2 + (SM \cdot V_2)$$

Sub in the Value: $V_1 = 3.5 V_0$, $V_2 = 0$, $V_4 = 2V_0$

$$3.5MV_0 = 3MV_0 + MV_2$$

$$V_{s} = 0.5 V_{o}$$

... The speed of the small block after the

voir and collision of so 0.5 V. and a statistic of the

A State of the second s

GO ON TO THE NEXT PAGE.

-6-

(c) The larger block slides a distance D before coming to rest. Determine the value of the coefficient of kinetic friction μ between the larger block and the surface on which it slides.

The decrease in kinetic energy = work done against friction

$$\frac{1}{2} \cdot (1.5 \text{ M}) \cdot (2 \text{ V}_{0})^{2} = f \cdot D$$

 $f = \frac{5N! \cdot V_0}{D}$ The **memor** in normal force N = Mg as the block is at rest in vertical direction. $f = M \cdot N = M \cdot (1.5Mg)$

$$\mathcal{U} = \frac{f}{N} = \frac{SM \cdot V_o^2}{D \cdot I \cdot SMq} = \frac{2V_o^2}{Dq}$$

(d) Indicate whether the collision between the two blocks is elastic or inelastic. Justify your answer.

The total kinetic energy before collision:

$$\pm M(3.5V_0)^2 = \frac{49}{8} M \cdot V_0^2$$

The total kinetic energy after collision: $\frac{1}{2}M(0.5U_0)^2 + \frac{1}{2}(1.5M)(2V_0)^2 = \frac{25}{8}M \cdot V_0^2$ $\frac{49}{8}M \cdot V_0^2 > \frac{45}{8}M V_0^2$... There is a loss of energy during the collision.

Itence the collision is inelastic.

GO ON TO THE NEXT PAGE.

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

2. (15 points)

A small block of mass M is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed $3.5v_0$ when it collides with a larger block of mass 1.5M at rest at the bottom of the incline. The larger block moves to the right at a speed $2v_0$ immediately after the collision. Express your answers to the following questions in terms of the given quantities and fundamental constants.

(a) Determine the height h of the ramp from which the small block was released.

 $M_{gh} = \frac{1}{2}Mv^{2}$ $5 IO(h) = \frac{1}{2}(3.5v_{0})$ 12.25 Vo

(b) Determine the speed of the small block after the collision.

$$M_{V} = M_{1}V_{1} + M_{2}V_{2}$$

$$M(3_{n}5_{v_{0}}) = M_{V} + (1.5M)(2v_{0})$$

$$3.5v_{0} = V + 3v_{0}$$

$$\boxed{0.5v_{0} = v_{f}}$$

GO ON TO THE NEXT PAGE.

-6-

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

$B2B_{\nu}$

(c) The larger block slides a distance D before coming to rest. Determine the value of the coefficient of kinetic friction μ between the larger block and the surface on which it slides.

$$\frac{1}{2} (1.5M)(2v)^{2} = \frac{1}{2} (1.5M) 4v^{2}$$

$$\frac{1}{2} (1.5M)(2v)^{2} = 2aD$$

$$EF = ma = F - F_{F}$$

$$= 3Mv^{2} J - Energy$$

$$ma = F - mgM$$

$$a = \frac{2v^{2}}{D}$$

$$\sum F = (1.5M) \left(\frac{2 v_0^2}{D} \right) = F - (1.5)g^M k \qquad Mk = \frac{F}{9} - \frac{6Mv_0^2}{Ag}$$

$$\frac{3Mv_0^2}{A} - F = -Mk$$

(d) Indicate whether the collision between the two blocks is elastic or inelastic. Justify your answer.

$$KE_1 = \frac{1}{2} mv^2 = \frac{1}{2} M(3.5v_0)^2 = \frac{1}{2} M(12.25v_0^2)^2$$

= 6.125 Mv6²

KE of smaller block = 3 Mv²
KE of smaller block ofter the collision =
$$\frac{1}{2}$$
 (M)(0.5v₀)²
= $\frac{1}{2}$ (0.25) Mv₀²
= 0.125 Mv₀²

It is relastric, because the speed of the larger ofter the collision is 2% but the speed of the smaller block after the collision is 0.5%. Thus, the two masses do not travel at the same speed after the collision.

GO ON TO THE NEXT PAGE.

-7-

2. (15 points)

A small block of mass M is released from rest at the top of the curved frictionless ramp shown above. The block slides down the ramp and is moving with a speed $3.5v_0$ when it collides with a larger block of mass 1.5M at rest at the bottom of the incline. The larger block moves to the right at a speed $2v_0$ immediately after the collision. Express your answers to the following questions in terms of the given quantities and fundamental constants.

(a) Determine the height h of the ramp from which the small block was released.

$$\frac{1}{2}m_{0}v_{a}^{2} + m_{0}g_{0}h_{0} = \pm m_{1}v_{1}^{2} + m_{0}g_{1}h_{1}$$

$$M \times 9.8 \times h = \frac{1}{2}M \times 3.5v_{a}$$

$$h = \frac{3.5v_{a}}{2(9.8)}$$

$$h = 0.1786v_{0}$$

(b) Determine the speed of the small block after the collision.

$$m_{0}v_{0} + m_{1}v_{1} = m_{0}v_{0} + m_{1}v_{1}$$

$$3.5v_{0} \times M = Mv_{0} + 1.5M \times 2v_{1}$$

$$\frac{3.5v_{0}}{3v_{1}} = v_{0}$$

$$1.167v_{0}/v_{1}' = v_{0}$$

GO ON TO THE NEXT PAGE.

-6-

(c) The larger block slides a distance D before coming to rest. Determine the value of the coefficient of kinetic friction μ between the larger block and the surface on which it slides.

 $F_{f} = F_{n} \cdot MK$, $F_{n} = 1.5X9.8$ = 14.7 M.

(d) Indicate whether the collision between the two blocks is elastic or inelastic. Justify your answer.

elastic collision because as block 1 collides with bigger mass block 2 both blocks has moved along opposite direction to each other.

GO ON TO THE NEXT PAGE.

-7-

AP[®] PHYSICS B 2006 SCORING COMMENTARY (Form B)

Question 2

Sample: B2A Score: 15

This response is well organized, and the work is very easy to follow. Part (c) uses the alternate solution.

Sample: B2B Score: 10

Part (a) earned 3 points since the cancellation on the second line is wrong and results in an incorrect answer. Part (b) received full credit. Part (c) earned 2 points for the kinematic equation and use of the correct initial speed. Part (d) earned 1 point for showing that the change in kinetic energy is not zero but does not have a correct conclusion or justification.

Sample: B2C Score: 4

Part (a) earned 2 points for using conservation of energy and having the correct potential energy. The other 2 points were earned in part (b) for using conservation of momentum and having the correct initial momentum.