
AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

5

Question 4: Drop Game (MBS)

Part A: dropLocationForColumn 3 1/2 points

 +1 1/2 loop over Locations in column
 +1/2 correct loop (traverse entire column or until empty location found)
 +1 construct Location object in context of loop
 +1/2 attempt using column
 +1/2 correct

 +1 1/2 find drop Location
 +1/2 check if constructed Location is empty
 +1 if exists, return empty Location with largest row # (no loop, no point)

 +1/2 return null if column is full

Part B: dropMatchesNeighbors 5 1/2 points

 +1 get drop Location
 +1/2 attempt (must call dropLocationForColumn)
 +1/2 correct (must use result)

 +1/2 return false if drop location is null

 +1 1/2 get neighboring pieces
 +1/2 attempt to access adj. neighbors
 (getNeighbor or neighborsOf or row/column access)

+1/2 correctly access 3 E/W/S neighbor Location objects
 +1/2 correctly access 3 neighbor Piece objects

 +2 1/2 determine matches
 +1/2 correct null neighbor test
 +1 compare colors of pieces
 +1/2 attempt (must reference pieceColor)
 +1/2 correct
 +1 return correct Boolean value1

 Usage: -1 environment or missing theEnv

AP® COMPUTER SCIENCE A/AB

2006 GENERAL USAGE

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once when the same usage is correct two or more times can be regarded as an oversight and not penalized. If
the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies*

local variable not declared when any
other variables are declared in some part

default constructor called without parens;
for example, new Fish;

use keyword as identifier

[r,c], (r)(c)or(r,c)instead of [r][c]

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side-effect, for
example a check for precondition

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent

missing () on method call or around
if/while conditions

missing ;s

missing “new” for constructor call once,
when others are present in some part

missing downcast from collection

missing int cast when needed

missing public on class or constructor
header

confused identifier (e.g., len for length
or left() for getLeft())

no local variables declared

new never used for constructor calls

void method or constructor returns a
value

modifying a constant (final)

use equals or compareTo method on
primitives, for example
int x; …x.equals(val)

[] – get confusion if access not tested in
rubric

assignment dyslexia, for example,
x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean values

"null" for null

extraneous code which causes side-effect,
for example, information written to output

use interface or class name instead of
variable identifier, for example
Simulation.step() instead of
sim.step()

aMethod(obj) instead of obj.aMethod()

use of object reference that is incorrect,
for example, use of f.move() inside
method of Fish class

use private data or method when not
accessible

destruction of data structure (e.g., by
using root reference to a TreeNode for
traversal of the tree)

use class name in place of super either in
constructor or in method call

*Note: Spelling and case discrepancies for identifiers fall under the
"nonpenalized" category as long as the correction can be unambiguously
inferred from context. For example, "Queu" instead of "Queue". Likewise,
if a student declares "Fish fish;", then uses Fish.move() instead of
fish.move(), the context allows for the reader to assume the object instead
of the class.

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4: Drop Game (MBS)

PART A:

public Location dropLocationForColumn(int column)
{
 for (int r = theEnv.numRows()-1; r >= 0; r--)
 {
 Location nextLoc = new Location(r, column);
 if (theEnv.isEmpty(nextLoc))
 {
 return nextLoc;
 }
 }
 return null;
}

ALTERNATE SOLUTION

public Location dropLocationForColumn(int column)
{
 int maxRow = -1;
 for (int r = 0; r < theEnv.numRows(); r++)
 {
 if (theEnv.isEmpty(new Location(r, column)))
 {
 maxRow = r;
 }
 }

 if (maxRow < 0)
 {
 return null;
 }
 return new Location(maxRow, column);
}

AP® COMPUTER SCIENCE A
2006 CANONICAL SOLUTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4: Drop Game (MBS) (continued)

PART B:

public boolean dropMatchesNeighbors(int column, Color pieceColor)
{
 Location loc = dropLocationForColumn(column);
 if (loc == null)
 {
 return false;
 }

 Piece n1 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.WEST)));
 Piece n2 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.EAST)));
 Piece n3 = (Piece)(theEnv.objectAt(theEnv.getNeighbor(loc, Direction.SOUTH)));
 return (n1 != null && n1.color().equals(pieceColor) &&
 n2 != null && n2.color().equals(pieceColor) &&
 n3 != null && n3.color().equals(pieceColor));
}

ALTERNATE SOLUTION

public boolean dropMatchesNeighbors(int column, Color pieceColor)
{
 Location loc = dropLocationForColumn(column);
 if (loc == null)
 {
 return false;
 }

 ArrayList neighbors = theEnv.neighborsOf(loc);
 int colorCount = 0;
 for (int i = 0; i < neighbors.size(); i++)
 {
 Piece nextNbr = (Piece)(theEnv.objectAt((Location)neighbors.get(i)));
 if (nextNbr != null && nextNbr.color().equals(pieceColor))
 {
 colorCount++;
 }
 }

 return (colorCount == 3);
}

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4

Overview

This question was based on the Marine Biology Simulation (MBS) case study and focused on abstraction and
code reuse. Students needed to show their understanding of the case study and its interacting classes in order to
implement methods for a particular board game. A Piece class was provided for representing game pieces and
implemented the Locatable interface. The DropGame class then represented the board as an
Environment of Pieces. In part (a) students were required to complete the
dropLocationForColumn method, which found the Location in that column where a dropped piece
would rest. This involved traversing the column and identifying the empty location with highest row index. In
part (b) students were required to complete the dropMatchesNeighbors method, which determined
whether a piece dropped in a specified column would result in a win. This involved first identifying the drop
location for that column (by calling the dropLocationForColumn method from part (a)) and then
checking neighboring locations for pieces of the same color. This last step could be accomplished in a variety of
ways using Environment, Location, and Direction methods.

Sample: A4A
Score: 9

Part (a): The code correctly sets a counter row to 0 and a Location, loc to the top element of the column.
This top element is examined, and if the location is empty, null is returned. If the top item is empty, the code
continues by processing a loop that continues as long as there are empty locations available. It is important to
notice that the loop body always advances the row counter and the corresponding location variable so that when
the loop terminates, the location loc is actually one row further down than it needs to be. This is not a problem,
even when the column is entirely empty. In the empty column case, the location loc will eventually reach the
theEnv.numRows() position, which is outside of the environment. Although this may appear problematic,
the loop is still correct since isEmpty() returns false when an invalid location is passed to it. After
exiting the loop, the code compensates for going one position too far by reducing the row counter by one and
correctly returning the corresponding location within the row. The student response is correct and earned the 3½
points for part (a).

Part (b): The student correctly obtains and saves the drop location through a valid call on
dropLocationForColumn using the appropriate column. Once the call is made, the returned location is
checked to make sure that it is a valid location. If it is not valid, there can be no match, and the code correctly returns
false. Otherwise, the code returns the value of a complex Boolean expression that determines whether or not the
pieceColor matches the colors of the neighboring pieces. The Boolean expression correctly finds the neighbors
through valid calls on getNeighbor. However, prior to obtaining the objects at the retrieved locations, the code
fails to check to see if the location is null. A ½ point was deducted for not making this check. Despite this, the
code correctly uses objectAt to obtain the piece, correctly accesses the color of the piece, and makes valid
comparisons to pieceColor. The expression returns true when all neighbors match the pieceColor
and false otherwise. Aside from the failure to check to see if the piece locations are null, the code is correct
and earned 5 points for part (b). The total score for this student was 8½ points, which (using program policy) was
rounded to a 9 for the final score.

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4 (continued)

Sample: A4B
Score: 5

Part (a): The student starts by looping from the bottom to the top of the column. The loop correctly accesses each
row of the column. There is an attempt to determine whether the location under consideration is empty. However,
although the form of the call on isEmpty is correct, the parameter is merely a row/column pair that suggests a
location. A ½ point was deducted for failing to correctly check that the location is empty. If the location is empty,
the code attempts to construct the correct empty location, but fails to use new to create the Location object.
The student received credit for attempting to create a location but lost a ½ point because it is not created correctly.
After saving the drop location, the code proceeds to set the loop control variable x equal to a -1. This has the
effect of terminating the loop upon the start of the next iteration. If the location is occupied the else branch is
taken where the code further checks to see if it is at the top location in the column under consideration. If it is
under consideration the column is full and the drop location is accordingly saved as null. Upon loop
termination the saved drop location is returned correctly. The response earned 2½ points for part (a).

Part (b): The student correctly obtains the drop location through a valid call on dropLocationForColumn
using the appropriate column. The code that attempts consideration of neighboring pieces is protected from
considering a null drop location through a well constructed if statement that correctly returns false when
the drop location is null. However, although an attempt is made to consider neighboring pieces through a call on
a nonexistent method getNeighborsOf, there is no sense in the code of considering each location individually.
Therefore, the score was reduced by 1 point (a ½ point for incorrectly accessing locations and a ½ point for
incorrectly accessing pieces). Further, no attempt is made to see if an examined location is null or not, which led
to a further ½ point deduction. Despite this, there is an attempt to make a color comparison. It is incorrect because the
getColor method is not defined for pieces. Failure to make the color check correctly reduced the score by an
additional ½ point. Since the code does not consider individual neighbor pieces it cannot correctly determine whether
or not a piece dropped in the drop location will win. This led to another 1 point deduction. The response earned 2½
points for part (b).

Sample: A4C
Score: 2

Part (a): The student starts by looping from the top to the bottom of the column. The loop correctly accesses each
row of the column. There is an attempt to determine whether a place under consideration is empty. However, a
row/column pair by itself is insufficient to show that there is an attempt to create a location in the context of a
loop. Consequently, the score was reduced by 1 point (a ½ point for the attempt to create a location in the context
of the loop and a ½ point for the correct creation of location). Likewise, in the absence of an attempt to create a
location, the method isEmpty does not receive a correct parameter. By itself, this error reduced the score by a
½ point. It is worth noting that failing to refer to theEnv when calling the method is also erroneous, but the
credit for this ½ point was already deducted due to the parameter error, so no further reduction was taken.
Although the variable count is calculated within the loop and is referenced in the if statement following the
loop, the attempt to create locations in the if-else statement does not refer to a row/column pair that is
related to count. Without the context of referring to a location within the loop, no credit could be awarded for
a correct return. One point was deducted for the incorrect return. The if-else statement also has the effect of
terminating the method before consideration of the final if statement. Since there is a return in each branch
of the if-else statement, the final if statement will never be executed. Therefore, no credit can be earned
for returning null when the column is full, and a ½ point was deducted for this error. This response earned a ½
point for part (a).

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 4 (continued)

Part (b): The student correctly calls the method dropLocationForColumn() using the appropriate column.
The student earned both the attempt and correctness ½ points for a total of 1 point. However, the code that
attempts to consider neighboring pieces is not protected from considering a null drop location. A ½ point was
deducted for failing to test for a null drop location. The if statement that follows the method call incorrectly
attempts to access the numAdjacentNeighbors() method from loc instead of theEnv. While there is
an attempt to examine appropriate neighbor pieces of the drop location, it fails since the constants WEST, SOUTH,
and EAST are accessed incorrectly (they must be Direction.WEST and so on). The neighbor locations are not
accessed correctly which results in a ½ point deduction. Further, there is no correct access of any piece object at any
of the locations. This resulted in a further deduction of a ½ point. There is a reference to color, but it is not related to
a single object or a single location. Further, there is no color comparison to the pieceColor parameter. Failing to
attempt a comparison between pieceColor and each neighbor’s color resulted in a deduction of 1 point (the
attempt ½ point and the correct ½ point). Attempting to find out if the locations are empty through the use of the
isEmpty method is not sufficient to protect the code from null locations. Note that the getNeighbor
method returns the adjacent neighboring location in the specified direction—whether it is valid or invalid. The
method isEmpty returns false when the location is invalid. Therefore, this is not an appropriate null test
and a ½ point was deducted accordingly. Since the code relies on erroneously accessing an aggregate color of all of
the neighbors, the return value is not correct. This resulted in a deduction of 1 point for incorrect return. It is worth
noting that even if the individual piece colors are accessed properly, the resulting code is still incorrect due to a
comparison of the obtained color to WHITE instead of the pieceColor. This response earned 1½ points for
part (b).

	2006 AP Computer Science A
	Question 1
	Sample A1A - Score 9
	Sample A1B - Score 5
	Sample A1C - Score 2
	Commentary

	Question 2
	Sample A2A - Score 9
	Sample A2B - Score 6
	Sample A2C - Score 3
	Commentary

	Question 3
	Sample A3A - Score 9
	Sample A3B - Score 6
	Sample A3C - Score 2
	Commentary

	Question 4
	Sample A4A - Score 9
	Sample A4B - Score 5
	Sample A4C - Score 2
	Commentary

