
AP® COMPUTER SCIENCE A
2006 SCORING GUIDELINES

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

4

Question 3: Customer List

Part A: compareCustomer 3 points

 +1 1/2 perform comparison
 +1/2 attempt (must call OBJ1.compareTo(OBJ2))
 +1/2 correctly access and compare names
 +1/2 correctly access and compare IDs

 +1/2 return 0 if and only if this = other
 +1/2 return positive if and only if this > other
 +1/2 return negative if and only if this < other

Part B: prefixMerge 6 points

 +1/2 initialize unique variables to index fronts of arrays

 +1 1/2 loop over arrays to fill result
 +1/2 attempt (must reference list1 and list2 inside loop)
 +1 correct (lose this if add too few or too many Customer elements)

 +1 1/2 compare array fronts (in context of loop)
 +1/2 attempt (must call compareCustomer on array elements)
 +1 correctly compare front Customer elements

+1 1/2 duplicate entries
 +1/2 check if duplicate entries found
 +1/2 if duplicates, copy only one to result (without use of additional structure)
 +1/2 update indices into both arrays (list1 and list2)

+1 nonduplicate entries
 +1/2 copy only smallest entry to result (without use of additional structure)
 +1/2 update index into that array only (list1 or list2)

Note: Solution may use constants as returned from part A.

Usage: -1/2 compareTo instead of compareCustomer for Customer objects

AP® COMPUTER SCIENCE A/AB

2006 GENERAL USAGE

Most common usage errors are addressed specifically in rubrics with points deducted in a manner other than indicated on this sheet.
The rubric takes precedence.

Usage points can only be deducted if the part where it occurs has earned credit.

A usage error that occurs once when the same usage is correct two or more times can be regarded as an oversight and not penalized. If
the usage error is the only instance, one of two, or occurs two or more times, then it should be penalized.

A particular usage error should be penalized only once in a problem, even if it occurs on different parts of a problem.

Nonpenalized Errors Minor Errors (1/2 point) Major Errors (1 point)

spelling/case discrepancies*

local variable not declared when any
other variables are declared in some part

default constructor called without parens;
for example, new Fish;

use keyword as identifier

[r,c], (r)(c)or(r,c)instead of [r][c]

= instead of == (and vice versa)

length/size confusion for array, String,
and ArrayList, with or without ()

private qualifier on local variable

extraneous code with no side-effect, for
example a check for precondition

common mathematical symbols for
operators (x • ÷ < > < > ≠)

missing { } where indentation clearly
conveys intent

missing () on method call or around
if/while conditions

missing ;s

missing “new” for constructor call once,
when others are present in some part

missing downcast from collection

missing int cast when needed

missing public on class or constructor
header

confused identifier (e.g., len for length
or left() for getLeft())

no local variables declared

new never used for constructor calls

void method or constructor returns a
value

modifying a constant (final)

use equals or compareTo method on
primitives, for example
int x; …x.equals(val)

[] – get confusion if access not tested in
rubric

assignment dyslexia, for example,
x + 3 = y; for y = x + 3;

super(method()) instead of
super.method()

formal parameter syntax (with type) in
method call, e.g., a = method(int x)

missing public from method header
when required

"false"/"true" or 0/1 for boolean values

"null" for null

extraneous code which causes side-effect,
for example, information written to output

use interface or class name instead of
variable identifier, for example
Simulation.step() instead of
sim.step()

aMethod(obj) instead of obj.aMethod()

use of object reference that is incorrect,
for example, use of f.move() inside
method of Fish class

use private data or method when not
accessible

destruction of data structure (e.g., by
using root reference to a TreeNode for
traversal of the tree)

use class name in place of super either in
constructor or in method call

*Note: Spelling and case discrepancies for identifiers fall under the
"nonpenalized" category as long as the correction can be unambiguously
inferred from context. For example, "Queu" instead of "Queue". Likewise,
if a student declares "Fish fish;", then uses Fish.move() instead of
fish.move(), the context allows for the reader to assume the object instead
of the class.

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP® COMPUTER SCIENCE A
2006 SCORING COMMENTARY

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

Question 3

Overview

This question focused on abstraction, array traversal, and the application of basic algorithms. In part (a) students
were given a class to represent customers. The Customer class had accessor methods for getting a customer’s
name and ID, and the students were required to complete the compareCustomer method that compared two
customers. This involved calling the name and ID accessors on both customers, comparing names (using the
String compareTo method), and also comparing IDs in the case of identical names. In part (b) students
were required to complete a method that took two sorted arrays of Customers and merged them into a single
array of fixed length. This involved maintaining indexes to the front of the arrays, repeatedly comparing
customers from the fronts (using the compareCustomer method from part (a)), and copying the “smaller”
customer to the merged array.

Sample: A3A
Score: 9

In part (a) the student correctly accesses and compares names. When they are different, the method correctly
returns the result of the compareTo method of the String class. When names are the same, the IDs are
correctly accessed and compared, and an acceptable value is returned in all cases.

Part (b) is completely correct. The student uses a loop to fill result, using independent indices to compare
elements in list1 and list2. Only the smaller entry is copied when the compared elements are not equal,
and the case of duplicate entries is handled correctly.

Sample: A3B
Score: 6

In part (a) the student correctly accesses and compares names, but the logic is incorrect when names are not equal,
losing those two ½ points. The method returns the correct value when the Customer objects are equal.

In part (b) the index variable j is changed automatically without regard to merging logic. This lost the 1 point for a
correct comparison to the fronts of the two arrays, the ½ point for updating array indices in the case of duplicates,
and the ½ point for updating a single array index when there are not duplicates. All other points were earned in this
part.

Sample: A3C
Score: 2

In part (a) only the IDs are compared correctly, earning a ½ point. No other points were awarded because there
was no call to the method compareTo, and the return logic was incorrect.

Part (b) earned 1½ points: the ½ point for attempting a loop, the ½ point for attempting to compare elements in
list1 and list2, and the ½ point for checking for duplicate elements. The index variable x is changed
automatically without regard to merging logic. The response lost the 1 point for a correct comparison to the fronts of
the two arrays, the ½ point for updating array indices in the case of duplicates, and the ½ point for updating a single
array index when there are not duplicates. It also lost the initialization ½ point because there are not multiple index
variables. Finally, the student lost the 1 point for loop correctness because of an incorrect loop bound.

