AP[®] CHEMISTRY 2006 SCORING GUIDELINES

Question 3

- 3. Answer the following questions that relate to the analysis of chemical compounds.
 - (a) A compound containing the elements C, H, N, and O is analyzed. When a 1.2359 g sample is burned in excess oxygen, 2.241 g of $CO_2(g)$ is formed. The combustion analysis also showed that the sample contained 0.0648 g of H.
 - (i) Determine the mass, in grams, of C in the 1.2359 g sample of the compound.

$$2.241 \text{ g } \text{CO}_2(g) \times \frac{1 \text{ mol} \text{CO}_2}{44.01 \text{ g } \text{CO}_2} \times \frac{1 \text{ mol} \text{ C}}{1 \text{ mol} \text{ CO}_2} \times \frac{12.011 \text{ g} \text{ C}}{1 \text{ mol} \text{ C}}$$

$$= 0.6116 \text{ g } \text{C}$$
One point is earned for the correct answer.

(ii) When the compound is analyzed for N content only, the mass percent of N is found to be 28.84 percent. Determine the mass, in grams, of N in the original 1.2359 g sample of the compound.

$1.2359 \text{ g sample} \times 0.2884 = 0.3564 \text{ g N}$ One point	is earned for the correct answer.	
--	-----------------------------------	--

(iii) Determine the mass, in grams, of O in the original 1.2359 g sample of the compound.

Because the compound contains only C, H, N, and O,	One point is earned for the
mass of $O = g \text{ sample} - (g H + g C + g N)$	answer consistent with the
= 1.2359 - (0.0648 + 0.6116 + 0.3564) = 0.2031 g	answers in parts (a)(i) and (a)(ii).

(iv) Determine the empirical formula of the compound.

Converting all masses to moles,	
$0.6116 \text{ g C} \times \frac{1 \text{ mol C}}{12.011 \text{ g C}} = 0.05092 \text{ mol C}$	One point is earned for all
$0.0648 \text{ g H} \times \frac{1 \text{ mol H}}{1.0079 \text{ g H}} = 0.06429 \text{ mol H}$	masses converted to moles.
$0.3564 \text{ g N} \times \frac{1 \text{ mol N}}{14.007 \text{ g N}} = 0.02544 \text{ mol N}$	<u>Note:</u> Moles of C may be shown
$0.2031 \text{ g O} \times \frac{1 \text{ mol O}}{16.00 \text{ g O}} = 0.01269 \text{ mol O}$	in part (a)(i).

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] CHEMISTRY 2006 SCORING GUIDELINES

Question 3 (continued)

Divide all mole quantities by the smallest number of moles:	
0.05092 mol ÷ 0.01269 mol = 4.013	One point is earned for dividing by the
0.06429 mol ÷ 0.01269 mol = 5.066	smallest number of moles.
0.02544 mol ÷ 0.01269 mol = 2.005	One point is earned for the empirical
0.01269 mol ÷ 0.01269 mol = 1.000	formula consistent with the ratio of moles
⇒ Empirical formula is $C_4H_5N_2O$	calculated.

- (b) A different compound, which has the empirical formula CH_2Br , has a vapor density of 6.00 g L⁻¹ at 375 K and 0.983 atm. Using these data, determine the following.
 - (i) The molar mass of the compound

$PV = nRT \implies \frac{PV}{RT} = n$ $\frac{(0.983 \text{ atm})(1.00 \text{ L})}{(0.0821 \text{ L atm mol}^{-1}\text{K}^{-1})(375 \text{ K})} = 0.0319 \text{ mol}$	One point is earned for applying the gas law to calculate <i>n</i> . One point is earned for calculating the molar mass.
molar mass of gas (M) = $\frac{6.00 \text{ g}}{0.0319 \text{ mol}}$ = 188 g mol ⁻¹ OR	OR
$M = \frac{DRT}{P} = \frac{6.00 \text{ g } \text{L}^{-1} \times 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1} \times 375 \text{ K}}{0.983 \text{ atm}}$ $= 188 \text{ g mol}^{-1}$	Two points are earned for calculating the molar mass using $M = \frac{DRT}{P}$

(ii) The molecular formula of the compound

and $\frac{188 \text{ g}}{93.9 \text{ g}} = 2.00$, so there must be two CH ₂ Br units per molecule. Therefore, the molecular formula of the compound is C ₂ H ₄ Br ₂ .	Each CH ₂ Br unit has mass of $12.011 + 2(1.0079) + 79.90 = 93.9$ g, and $\frac{188 \text{ g}}{93.9 \text{ g}} = 2.00$, so there must be two CH ₂ Br units per molecule. Therefore, the molecular formula of the compound is C ₂ H ₄ Br ₂ .	consistent with the molar mass
--	---	--------------------------------

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

- 3. Answer the following questions that relate to the analysis of chemical compounds.
 - (a) A compound containing the elements C, H, N, and O is analyzed. When a 1.2359 g sample is burned in excess oxygen, 2.241 g of $CO_2(g)$ is formed. The combustion analysis also showed that the sample contained 0.0648 g of H.
 - (i) Determine the mass, in grams, of C in the 1.2359 g sample of the compound.
 - (ii) When the compound is analyzed for N content only, the mass percent of N is found to be 28.84 percent. Determine the mass, in grams, of N in the original 1.2359 g sample of the compound.
 - (iii) Determine the mass, in grams, of O in the original 1.2359 g sample of the compound.
 - (iv) Determine the empirical formula of the compound.
 - (b) A different compound, which has the empirical formula CH_2Br , has a vapor density of 6.00 g L⁻¹ at 375 K and 0.983 atm. Using these data, determine the following.
 - (i) The molar mass of the compound
 - (ii) The molecular formula of the compound

3. $(1)_{\mathcal{V}}$ 2.0119C10.101160 WA MI UI 05092 molC 11 101110 /ทา .010420 612 2.60 MAG 012100 $\mathcal{W}_{\mathcal{S}}$ 0|2mo 0 16.00 gl GO ON TO THE NEXT PAGE.

-16-

ADDITIONAL PAGE FOR ANSWERING QUESTION 3.

2

ipm=DR U.00 9.17 Lot N 375K シ ()L atri 5 emprica formula ະ molecular formul

STOP

If you finish before time is called, you may check your work on this part only. Do not turn to the other part of the test until you are told to do so.

- 3. Answer the following questions that relate to the analysis of chemical compounds.
 - (a) A compound containing the elements C, H, N, and O is analyzed. When a 1.2359 g sample is burned in excess oxygen, 2.241 g of $CO_2(g)$ is formed. The combustion analysis also showed that the sample contained 0.0648 g of H.
 - (i) Determine the mass, in grams, of C in the 1.2359 g sample of the compound.
 - (ii) When the compound is analyzed for N content only, the mass percent of N is found to be 28.84 percent. Determine the mass, in grams, of N in the original 1.2359 g sample of the compound.
 - (iii) Determine the mass, in grams, of O in the original 1.2359 g sample of the compound.
 - (iv) Determine the empirical formula of the compound.
 - (b) A different compound, which has the empirical formula CH_2Br , has a vapor density of 6.00 g L⁻¹ at 375 K and 0.983 atm. Using these data, determine the following.
 - (i) The molar mass of the compound
 - (ii) The molecular formula of the compound

a. i molar ma mo ormed Carbon compound tormed by comple heon i admoles of 15 equal CO2 formed the sample in ς on and GO ON TO THE NEXT PAGE.

ADDITIONAL PAGE FOR ANSWERING QUESTION 3. iv. 0:61 9 mol of C. 64 UiŨ molot X g mo 3 molof 0 + smallest # of moles 6 mo ThO Ecoefficient of C Ecoeft VCI CHITO firment of O mD 0.01300 H 19 ιU 0.0171.270 q mmolar . Vap 01 mmolar mn ìÌ 9/noi Ymol Mass tormu MDIVICA mo coefficients of empirical formula must In 5e Mu The STOP

If you finish before time is called, you may check your work on this part only. Do not turn to the other part of the test until you are told to do so.

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

- 3. Answer the following questions that relate to the analysis of chemical compounds.
 - (a) A compound containing the elements C, H, N, and O is analyzed. When a 1.2359 g sample is burned in excess oxygen, 2.241 g of CO₂(g) is formed. The combustion analysis also showed that the sample contained 0.0648 g of H.
 - (i) Determine the mass, in grams, of C in the 1.2359 g sample of the compound.
 - (ii) When the compound is analyzed for N content only, the mass percent of N is found to be 28.84 percent. Determine the mass, in grams, of N in the original 1.2359 g sample of the compound.
 - (iii) Determine the mass, in grams, of O in the original 1.2359 g sample of the compound.
 - (iv) Determine the empirical formula of the compound.
 - (b) A different compound, which has the empirical formula CH₂Br, has a vapor density of 6.00 g L⁻¹ at 375 K and 0.983 atm. Using these data, determine the following.
 - (i) The molar mass of the compound
 - (ii) The molecular formula of the compound

Sample 1 359 conta 649 Ø 00% molt 2. 44.01*10* 0509 Ch 2 mo mo 018 mol 105709 mol sample 28.94% N 11. 2359 3569 sampl 2359 a sample 111 .06 Q 037 ba 2033 a 03 mo 0127 Ξ IV Ø .0127 = 2 mal 70 0 012 mo empinica formula

GO ON TO THE NEXT PAGE.

(b) CH_2Br 6.00g/c 375 K983 atm T gaseous <u>b.00 g × 1mo1</u> .0 <u>b39 mo1</u> 1.0L 93.9260g <u>L</u> = .0 <u>b39 M</u> L .0 <u>b39 mo1</u> CH ₂ Br ~ 4 atoms 2570 C0 <u>b39 mo1 G</u> 5070 H ₂ .1278 mo1 H ₂ .0 <u>b39 mo1 C × 1mo1</u> = .7 <u>b75 gC</u> .1279 mo1 H ₂ × 1mo1 = .2562 gH ₂ .0 <u>b39 mo1 Br × 1mo1</u> = 5.10b g Br .2556 mo1 CH_Br			· · · · ·		·			30
$\frac{71}{93,9260113} + 0.00 g \times 1001}{1.01} + 0.0639 mo1}$ $= .0639 M$ $= .0639 M$ $= .0639 M$ $= .0639 M$ $= .0639 mo1 C + 2 Br - 4 atoms$ $2570 C \times .0639 mo1 G$ $= .0639 mo1 Br$ $= .0639 mo1 Br$	(6) (H2Br 6.00	19/L	3751	<u>۶, ۹</u>	<u>83 a</u>	tm	
$\frac{1.01}{1.01} \times \frac{93.9268g}{93.9268g} = \frac{1.0031 \text{ mor}}{1}$ $= .0639 \text{ M}$ $= .0639 \text{ M}$ $= .0639 \text{ M}$ $= .0639 \text{ M}$ $= .0639 \text{ mol} \text{ C}$ $= .0639 \text{ mol} \text{ G}$ $= .0639 \text{ mol} \text{ H}_2$	· ·	<u>r</u>		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
$= .0639 \text{ M}$ $= .0639 \text{ M}$ $= .0639 \text{ M}$ $2570 \text{ C} + .0639 \text{ mol} \text{ G}$ $5050 \text{ H}_2 + .1278 \text{ mol} \text{ H}_2$ $= .0639 \text{ mol} \text{ H}_2$ $5050 \text{ H}_2 + .1278 \text{ mol} \text{ H}_2$ $= .0639 \text{ mol} \text{ H}_2$	·	gaseous	6.00	ia y	1m01		-0639 m	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				J ^	93.926	28g -	L	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						=	.0639 M	
$\frac{2570 \text{ Ci}}{50\% \text{ H}_2} , 0639 \text{ mol G}}{50\% \text{ H}_2} \frac{50\% \text{ H}_2}{1278 \text{ mol H}_2} \frac{1278 \text{ mol H}_2}{1278 \text{ mol H}_2} \frac{25\% \text{ Br}}{.0639 \text{ mol Br}} \frac{.0639 \text{ mol Br}}{.0639 \text{ mol Br}} \frac{2.029}{1 \text{ mol }}{1 = .2582 \text{ gH}_2} \frac{.029 \text{ mol H}_2}{.029 \text{ mol Br}} \frac{.0639 \text{ mol Br}}{.0639 \text{ mol Br}} \frac{.0639 \text{ mol Br}$	L	,0639 mo	1 CH;	2Br -	= 4 ator			19. 19 1
$\frac{50\% H_2}{1278 mol H_2}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{10039} mol C \times \frac{12.0119}{1001} = .76759C$ $\frac{12.79 mol H_2 \times \frac{12.029}{1001} = .2582 gH_2$ $\frac{.0239}{.0039 mol Br \times \frac{79.909}{1001} = 5.10b g Br$. :				25% 0	N	0639 mo.	L G
$\frac{1}{10639} = \frac{2590 \text{ Br}}{10639 \text{ mol}} = \frac{2590 \text{ Br}}{10639 \text{ mol}} = \frac{120119}{1001} = \frac{2590 \text{ Br}}{1001} = 1000000000000000000000000000000000000$	·							
$\frac{.0539 \text{ mol } C \times \frac{12.0119}{1 \text{ mol}} = .7675gC}{.1279 \text{ mol } H_2 \times \frac{2.029}{1 \text{ mol}} = .2582 \text{ gH}_2}$ $\frac{.0539 \text{ mol } Br \times \frac{.7990g}{1 \text{ mol}} = 5.106 \text{ gBr}$		1						1
$\frac{1279 \text{ mol} \text{ H}_2 \times \frac{2.029}{1 \text{ mol} 1} = .2582 \text{ g} \text{ H}_2}{.0009 \text{ mol} \text{ Br} \times \frac{79.909}{1 \text{ mol} 2} = 5.106 \text{ g} \text{ Br}}$,0639 MI	ol C ×	Ime1	-			
.0639 mol Br x 19.10g = 5.106 g Br				2.029	= 2583	2 att	-,	
.2556 mol CH2Br			-	79.909	-= 5 101	a a B	× .	
				3v	2.101	290		
								· · · · · · · · · · · · · · · · · · ·
	····· ··· ·	<u>= • </u>						
				· · · · · ·	·			
	······							
							,	
		·						
					·····		,	
		······						
	· · · ·						······	

STOP

If you finish before time is called, you may check your work on this part only. Do not turn to the other part of the test until you are told to do so.

-17-

AP[®] CHEMISTRY 2006 SCORING COMMENTARY

Question 3

Overview

Students were asked to use different types of data to determine the empirical formula of a compound. With a different set of data, students were asked to determine a molecular formula.

Sample: 3A Score: 9

This response is clear, organized, and earned all 9 points: 1 point for part (a)(i), 1 point for part (a)(ii), 1 point for part (a)(ii), 3 points for part (a)(iv), 2 points for part (b)(i), and 1 point for part (b)(ii).

Sample: 3B Score: 7

The point was not earned in part (a)(i) because the number of significant figures in the answer is off by more than one. Only 3 out of 4 points were earned in part (a)(iv) because the numbers are inappropriately rounded to such a degree that the empirical formula is not valid.

Sample: 3C Score: 6

No points were earned in part (b) because the number of moles and molar mass are not calculated correctly.