AP ${ }^{\circledR}$ CALCULUS AB 2006 SCORING GUIDELINES

Question 6

The twice-differentiable function f is defined for all real numbers and satisfies the following conditions:

$$
f(0)=2, f^{\prime}(0)=-4, \text { and } f^{\prime \prime}(0)=3 .
$$

(a) The function g is given by $g(x)=e^{a x}+f(x)$ for all real numbers, where a is a constant. Find $g^{\prime}(0)$ and $g^{\prime \prime}(0)$ in terms of a. Show the work that leads to your answers.
(b) The function h is given by $h(x)=\cos (k x) f(x)$ for all real numbers, where k is a constant. Find $h^{\prime}(x)$ and write an equation for the line tangent to the graph of h at $x=0$.
(a) $g^{\prime}(x)=a e^{a x}+f^{\prime}(x)$
$g^{\prime}(0)=a-4$
$g^{\prime \prime}(x)=a^{2} e^{a x}+f^{\prime \prime}(x)$
$g^{\prime \prime}(0)=a^{2}+3$
(b) $\quad h^{\prime}(x)=f^{\prime}(x) \cos (k x)-k \sin (k x) f(x)$
$h^{\prime}(0)=f^{\prime}(0) \cos (0)-k \sin (0) f(0)=f^{\prime}(0)=-4$
$h(0)=\cos (0) f(0)=2$
The equation of the tangent line is $y=-4 x+2$.
$4:\left\{\begin{array}{l}1: g^{\prime}(x) \\ 1: g^{\prime}(0) \\ 1: g^{\prime \prime}(x) \\ 1: g^{\prime \prime}(0)\end{array}\right.$
$5:\left\{\begin{array}{l}2: h^{\prime}(x) \\ 3:\left\{\begin{array}{l}1: h^{\prime}(0) \\ 1: h(0) \\ 1: \text { equation of tangent line }\end{array}\right.\end{array}\right.$

Work for problem 6(a)

$$
\begin{aligned}
& g(x)=e^{a x}+f(x) \\
& g^{\prime}(x)=a \cdot e^{a x}+f^{\prime}(x) \\
& g^{\prime \prime}(x)=a^{2} e^{a x}+f^{\prime \prime}(x) \Rightarrow g^{\prime}(0)=a \cdot e^{0}+f^{\prime}(0) \\
&=a-4 \\
&=a^{2}+3
\end{aligned}
$$

S
6 . 6

Work for problem 6(b)

$h(x)=\cos (k x) p(x)$
$\cdot h^{\prime}(x)=-\sin (k x) \cdot k \cdot f(x)+\cos (k x) \cdot f^{\prime}(x)$
$=-k \cdot \sin (k x) \cdot f(x)+\cos (k x) \cdot f^{\prime}(x)$
$h^{\prime}(0)=-k \cdot \sin 0 \cdot f(0)+\cos (0) \cdot f^{\prime}(0)$
$=0+1 \cdot(-4)=-4$
$y=m x+b \quad h(0)=\cos 0 \cdot f(0)=1.2=2$
$y=-4 x+b$
$2=-4.0+b$
$b=2$
the line tangent to the graph of h is $y=-4 x+2$

STOP
END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

- maKe sure you have completed the identification INFORMATION AS REQUESTED ON THE FRONT AND BACK COVERS OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER LABEL APPEARS IN THE BOX(ES) ON THE COVER (S).
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMS YOU HAVE TAKEN THIS YEAR.

$$
\begin{aligned}
u & =a x \\
d u & =a
\end{aligned}
$$

Work for problem 6(a)

$$
\begin{aligned}
& g(x)=e^{a x}+f(x) \\
& g^{\prime}(x)=a e^{a x}+f^{\prime}(x) \\
& g^{\prime}(0)=a e^{a \theta}+4 \\
& g^{\prime}(0)=a-4 \\
& g^{\prime \prime}(0)=2 a e^{a x}+f^{\prime \prime}(0) \\
& g^{\prime \prime}(0)=2 a e^{a(0)}+3 \\
& g^{\prime \prime}(0)=2 a+3
\end{aligned}
$$

Work for problem 6(b)

$$
\begin{aligned}
& h(x)=\cos (k x) f(x) \\
& h^{\prime}(x)=\cos (k x) f^{\prime}(x)+k \sin (k x) f(x) \\
& h^{\prime}(0)=\cos (0)-4+k \sin (0) 2 \\
& h^{\prime}(0)=-4+0 \\
& h^{\prime}(0)=-4 \\
& h(0)=\cos (k 0) f(0) \\
& h(0)=1 \cdot 2 \\
& h(0)=2
\end{aligned}
$$

$$
y=2=-4(x-0)
$$

END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE FRONT AND BACK COVERS OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER LABEL. APPEARS IN THE BOXES) ON THE COVER (S).
- MAKE SURE YOU HAVE USED THE SAME SET OF AP NUMBER LABELS ON ALL AP EXAMS YOU HAVE TAKEN THIS YEAR.

Work for problem 6(a)

$$
\begin{array}{ll}
f(0)=2 & f^{\prime}(0)=-4 \\
g(x)=e^{a x}+f(x) \\
g^{\prime \prime}(x)=e^{a x} \cdot a+f^{\prime}(x)=3 \\
g^{\prime}(x)=a e^{a x}+-4 \\
g^{\prime}(x)=a e^{a x}-4 & \begin{array}{l}
e^{x} \frac{d}{d x}=e^{x} \\
e^{f(x)} \frac{d}{d x}=e^{f(x)} f(x) \frac{d}{d x}
\end{array}
\end{array}
$$

$e^{0}=1 \quad g^{\prime}(0)=a e^{(0)}-4$

$$
\begin{aligned}
& g^{\prime}(0)=a-4 \\
& g^{\prime \prime}(x)=\left[a e^{a x} \cdot a\right] \\
& g^{\prime \prime}(x)=a^{2} e^{a x} \\
& g^{\prime \prime}(0)=a^{2}\left(e^{a(0)}=1\right. \\
& g^{\prime \prime}(0)=a^{2}
\end{aligned}
$$

Work for problem 6(b)

$$
\begin{aligned}
& h(x)=\cos (k x) f(x) \\
& h^{\prime}(x)=-\sin (k x) \cdot k \cdot f^{\prime}(x) \\
& h^{\prime}(x)=-k f(x) \sin (k x) \\
& h(x)=\cos (k(0)) f(0) \\
&=\cos 0 \cdot 2 \\
&=2 \\
& p o i n t \\
& y-2=(-k f(x) \sin (k x))(x-0) \\
& y=[-k f(x) \sin (k x))(x)+2
\end{aligned}
$$

END OF EXAM

THE FOLLOWING INSTRUCTIONS APPLY TO THE COVERS OF THE SECTION II BOOKLET.

- MAKE SURE YOU HAVE COMPLETED THE IDENTIFICATION INFORMATION AS REQUESTED ON THE FRONT AND BACK COVERS OF THE SECTION II BOOKLET.
- CHECK TO SEE THAT YOUR AP NUMBER LABEL APPEARS IN THE BOXES) ON THE COVER (S).
- make sure you have used the same set of ap NUMBER LABELS ON ALL AP EXAMS YOU HAVE TAKEN THIS YEAR.

AP ${ }^{\circledR}$ CALCULUS AB
 2006 SCORING COMMENTARY

Question 6

Overview

This problem gave students the values of $f(0), f^{\prime}(0)$, and $f^{\prime \prime}(0)$ for a twice-differentiable function f. In part (a) the function g was defined as the sum of f and an exponential function involving a parameter. Students had to use the chain rule and addition rule for differentiation, and the given information about f, to compute $g^{\prime}(0)$ and $g^{\prime \prime}(0)$ in terms of that parameter. Part (b) introduced a function h as the product of f and a cosine function involving the parameter k. Here students had to use the chain rule and product rule to compute the derivative of h and then use that derivative to write an equation for the line tangent to the graph of h at $x=0$. Although not asked, it was hoped that the students would make the interesting observation that the equation of the tangent line at $x=0$ is the same for all values of the parameter k.

Sample: 6A

Score: 9
The student earned all 9 points.

Sample: 6B

Score: 6

The student earned 6 points: 2 points in part (a) and 4 points in part (b). In part (a) the student correctly presents $g^{\prime}(x)$ and $g^{\prime}(0)$. The student presents an incorrect $g^{\prime \prime}(x)$ and was not eligible for the fourth point in part (a). In part (b) the student's $h^{\prime}(x)$ includes a sign error and earned only 1 of the 2 derivative points. The presented value for $h(0)$ is correct, $h^{\prime}(0)$ is consistent with the student's $h^{\prime}(x)$, and the student correctly writes an equation of the tangent line.

Sample: 6C
 Score: 3

The student earned 3 points: 2 points in part (a) and 1 point in part (b). In part (a) the student correctly presents $g^{\prime}(x)$ and $g^{\prime}(0)$. The student presents an incorrect $g^{\prime \prime}(x)$ and was not eligible for the fourth point in part (a). In part (b) the student presents an incorrect $h^{\prime}(x)$. The $h(0)$ point was earned. The student does not find $h^{\prime}(0)$ and does not write an equation of the tangent line.

