AP ${ }^{\circledR}$ CALCULUS AB 2006 SCORING GUIDELINES

Question 3

The graph of the function f shown above consists of six line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(4), g^{\prime}(4)$, and $g^{\prime \prime}(4)$.
(b) Does g have a relative minimum, a relative maximum, or neither at $x=1$? Justify your answer.

(c) Suppose that f is defined for all real numbers x and is periodic with a period of length 5 . The graph above shows two periods of f. Given that $g(5)=2$, find $g(10)$ and write an equation for the line tangent to the graph of g at $x=108$.
(a) $g(4)=\int_{0}^{4} f(t) d t=3$
$g^{\prime}(4)=f(4)=0$
$g^{\prime \prime}(4)=f^{\prime}(4)=-2$
(b) g has a relative minimum at $x=1$
because $g^{\prime}=f$ changes from negative to positive at $x=1$.
(c) $g(0)=0$ and the function values of g increase by 2 for every increase of 5 in x.

$$
\begin{aligned}
g(10) & =2 g(5)=4 \\
g(108) & =\int_{0}^{105} f(t) d t+\int_{105}^{108} f(t) d t \\
& =21 g(5)+g(3)=44
\end{aligned}
$$

$g^{\prime}(108)=f(108)=f(3)=2$
An equation for the line tangent to the graph of g at $x=108$ is $y-44=2(x-108)$.
$3:\left\{\begin{array}{l}1: g(4) \\ 1: g^{\prime}(4) \\ 1: g^{\prime \prime}(4)\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { reason }\end{array}\right.$
$4:\left\{\begin{array}{l}1: g(10) \\ 3:\left\{\begin{array}{l}1: g(108) \\ 1: g^{\prime}(108) \\ 1: \text { equation of tangent line }\end{array}\right.\end{array}\right.$

$$
\begin{aligned}
& g(4)=\int_{0}^{4} f(t) d t=3 \\
& g^{\prime}(4)=f(4)=0 \\
& g^{\prime \prime}(4)=f^{\prime}(4)=\frac{2+2}{3-5}=\frac{4}{-2}=-2 \\
& g^{\prime \prime}(4)=f^{\prime}(4)=-2
\end{aligned}
$$

g has a relative minimum at $x=1$ because $g^{\prime}(x)=f(x)$ changes from negative to positive at $x=1$

Work for problem 3(c)

$$
\begin{aligned}
& g^{\prime}(x)=f(x) \\
& g(x)=s f(x) d x
\end{aligned}
$$

- If $g(5)=2$ and f is periodic $w /$ a period length af 5 , the $g(10)=4$
- $g(108)=$?

$$
\begin{aligned}
& g(108)=\int_{0}^{108} f(x) d x=44 \\
& g^{\prime}(108)=f(108)=2 \\
& (y-44)=2(x-108) \\
& y=2 x-72
\end{aligned}
$$

END OF PART A OF SECTION II

$$
\begin{aligned}
& g(1)=\int_{0}^{1} f(x) d t=-1 \\
& g(-5)=\int_{0}^{-5} f(x) d t=-2 \\
& g(-1)=\int_{0}^{-1} f(x) d t=+1 \\
& g(4)=\int_{0}^{4} f(x) d t=3 \\
& g(5)=\int_{0}^{5} f(x) d t=2
\end{aligned}
$$

9 has neither a max or min $x=1$ because max occurs at $x=4$ and min @

$$
x=-5
$$

Work for problem 3(c)

$$
\begin{aligned}
& \frac{10}{5}=2 \quad g(5)=\int_{0}^{5} f(t) d t=2 \\
& 1 g(10)=2 \int_{0}^{5} f(t) d t \\
& g(10)=2(2)=4 \\
& g(108)=\frac{108}{5} \int_{0}^{5} f(t) d t=\frac{216}{5} \\
& \frac{108}{5}=21 \frac{3}{5} \quad f(108)=f(3) \\
& g^{\prime}(108)=f(108)=f(3)=2 \\
& y-\frac{216}{5}=2(x-108)
\end{aligned}
$$

END OF PART A OF SECTION II

Work for problem 3(a)

$$
\frac{2-(-2)}{-3+5}=2 \quad y=2 x+8 \quad \frac{2-(-2)}{-2}=-2 \quad y=-2 x-2
$$

$$
\begin{array}{rlr}
g(4) & =\int_{0}^{4}(-2 x+8) d x \quad g^{\prime}(4)=0 \\
& \left.=-x^{2}+8 x\right]_{0}^{4}
\end{array}
$$

$$
=16
$$

$$
\therefore g(4)=16
$$

There is a relative minimum at $x=1$ because the sign analysis shows that slope is negative from $(-1,1)$ and then there is 0 slope at $x=1$ and slope is positive from $(1,4)$.

Work for problem 3(c)
slope $=-2$

$$
\begin{aligned}
2 & =-2(5)+b \\
b & =12 \\
\therefore y & =-2 x+12
\end{aligned}
$$

The equation of the line tangent to the curve is $y=-2 x+12$

$$
\left.y\right|_{x=10}=-8
$$

END OF PART A OF SECTION II IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.

AP ${ }^{\circledR}$ CALCULUS AB
 2006 SCORING COMMENTARY

Question 3

Overview

This problem required the Fundamental Theorem of Calculus. Students were given the piecewise-linear graph of the function f and were asked about the function g defined as the definite integral of f from 0 to x. It was expected that students would use the graph of f, as well as the area bounded by the graph of f and the x-axis, to answer questions about g, g^{\prime}, and $g^{\prime \prime}$. Part (a) asked for the values of $g(4), g^{\prime}(4)$, and $g^{\prime \prime}(4)$. Part (b) asked about the behavior of g at $x=1$. In part (c) the function f is extended in a periodic fashion. Students had to compute $g(10), g(108)$, and $g^{\prime}(108)$ using the periodic behavior of f.

Sample: 3A

Score: 9

The student earned all 9 points. In part (c) the student writes an equation $y=2 x-72$ but declares the correct answer for the equation of the tangent line by enclosing it in a box.

Sample: 3B
 Score: 6

The student earned 6 points: 3 points in part (a) and 3 points in part (c). In part (a) the student gives correct values for $g(4), g^{\prime}(4)$, and $g^{\prime \prime}(4)$, which earned 3 points. In part (b) the student claims that there is neither a maximum nor a minimum at $x=1$; consequently, the student was not eligible for the justification point. In part (c) the student earned 1 point for giving the correct value for $g(10)$. The student declares an incorrect value for $g(108)$ but a correct value for $g^{\prime}(108)$. These values are correctly used to write the equation of the tangent line. The student earned 1 point for $g^{\prime}(108)$ and 1 point for the tangent line since the incorrect value for $g(108)$ is used correctly.

Sample: 3C
 Score: 3

The student earned 3 points: 2 points in part (a) and 1 point in part (b). In part (a) the student correctly identifies $g^{\prime}(4)$ and $g^{\prime \prime}(4)$, which earned 2 points. In part (b) the student declares a relative minimum at $x=1$ but did not earn the justification point. The argument refers to slope without designating whether it refers to the slope of f or the slope of g. No points were earned in part (c).

