AP[®] CALCULUS AB 2006 SCORING GUIDELINES (Form B)

Question 3

The figure above is the graph of a function of x, which models the height of a skateboard ramp. The function meets the following requirements.

- (i) At x = 0, the value of the function is 0, and the slope of the graph of the function is 0.
- (ii) At x = 4, the value of the function is 1, and the slope of the graph of the function is 1.
- (iii) Between x = 0 and x = 4, the function is increasing.
- (a) Let $f(x) = ax^2$, where a is a nonzero constant. Show that it is not possible to find a value for a so that f meets requirement (ii) above.
- (b) Let $g(x) = cx^3 \frac{x^2}{16}$, where *c* is a nonzero constant. Find the value of *c* so that *g* meets requirement (ii) above. Show the work that leads to your answer.
- (c) Using the function g and your value of c from part (b), show that g does not meet requirement (iii) above.
- (d) Let $h(x) = \frac{x^n}{k}$, where k is a nonzero constant and n is a positive integer. Find the values of k and n so that h meets requirement (ii) above. Show that h also meets requirements (i) and (iii) above.

(a)
$$f(4) = 1$$
 implies that $a = \frac{1}{16}$ and $f'(4) = 2a(4) = 1$
implies that $a = \frac{1}{8}$. Thus, f cannot satisfy (ii).
(b) $g(4) = 64c - 1 = 1$ implies that $c = \frac{1}{32}$.
When $c = \frac{1}{32}$, $g'(4) = 3c(4)^2 - \frac{2(4)}{16} = 3(\frac{1}{32})(16) - \frac{1}{2} = 1$
(c) $g'(x) = \frac{3}{32}x^2 - \frac{x}{8} = \frac{1}{32}x(3x - 4)$
 $g'(x) < 0$ for $0 < x < \frac{4}{3}$, so g does not satisfy (iii).
(d) $h(4) = \frac{4^n}{k} = 1$ implies that $4^n = k$.
 $h'(4) = \frac{a4^{n-1}}{k} = \frac{n4^{n-1}}{4^n} = \frac{n}{4} = 1$ gives $n = 4$ and $k = 4^4 = 256$.
 $h(x) = \frac{x^4}{256} \Rightarrow h(0) = 0$.
 $h'(x) = \frac{4x^3}{256} \Rightarrow h'(0) = 0$ and $h'(x) > 0$ for $0 < x < 4$.

© 2006 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

3 3 3 3 3 3A 3 3 3 3 Work for problem 3(a) according to (ii), f(4) = 1, f'(4) = 1 $f(x) = \alpha x^2 \rightarrow |6\alpha| = |\alpha| = \frac{1}{16}$ $f'(x) = 2\alpha x \rightarrow 8x = 1 \quad \alpha = \frac{1}{8}$. it's impossible to find a value for a so that f meets requirement (ii). Work for problem 3(b) α (cording to (ii), g(4) = 1, g'(4) = 1 $g(x) = (x^3 - \frac{x^2}{7_6}) \rightarrow (4c - \frac{16}{7_6}) = (4c - 1) = 1$ $C = \frac{1}{32}$ $C = \frac{1}{32}$ $g'(x) = \Im(x^2 - \frac{1}{8}x \rightarrow 3.16.c - \frac{1}{2} = 48c - \frac{1}{2} = 1$. (= =

Continue problem 3 on page 9

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

-8-

Do not write beyond this border.

Do not write beyond this border.

Continue problem 3 on page 9.

© 2006 The College Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

$3 \frac{3}{3} \frac{$

7=4y=11=64c-12=64c

Work for problem 3(b)

 $C = \frac{1}{32}$

Continue problem 3 on page 9

3 3 3 3	3 3	3 3	3	3	30
Work for problem 3(c) $Q(x) = \frac{x^3}{2} = \frac{x^4}{2}$	x=0 y=0	x=3 y=0			
$= \frac{x^{3} - 2x^{2}}{32}$	x = 1 $y = -\frac{1}{32}$	X=4 Y=1			
	x=2 y=0				
Work for problem 3(d) $h(x) = \frac{x^{n}}{k}$					
$1 = \frac{4^{n}}{k}$					
					:
		·			

END OF PART A OF SECTION II IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.

AP[®] CALCULUS AB 2006 SCORING COMMENTARY (Form B)

Question 3

Overview

This problem presented three requirements that had to be satisfied by the graph of a function modeling the height of a skateboard ramp. Students were asked to investigate three families of functions that might be used for such a

model. In part (a) they were asked to show that no quadratic of the form ax^2 would satisfy the second

requirement. In part (b) they were asked to find the coefficient c for which the cubic $cx^3 - \frac{x^2}{16}$ would meet the

second requirement, but then show in part (c) that the cubic with this value of c does not meet the third requirement. Finally, in part (d) students were asked to find the values of n and k for which the power function

 $\frac{x^n}{k}$ would meet all three requirements.

Sample: 3A Score: 9

The student earned all 9 points.

Sample: 3B Score: 6

The student earned 6 points: 2 points in part (a), 1 point in part (b), 1 point in part (c), and 2 points in part (d). The student's work is correct in parts (a) and (b). In part (c) the student earned 1 point for finding the derivative of g. The student does not explain why g is not increasing between x = 0 and x = 4 and so did not earn the second point in this part. In part (d) the student sets up correct equations to find n and k, earning 1 point for each equation, but does not find n or k and thus cannot show that the function h meets requirements (i) and (iii).

Sample: 3C Score: 3

The student earned 3 points: 1 point in part (a), 1 point in part (b), and 1 point in part (d). In part (a) the student finds the value of a for which f(4) = 1, which earned the first point, but fails to show that this value of a does not work to meet requirement (ii). In part (b) the student uses the information about g to find the desired value of c. In part (c) the student's calculations of the values of the function g at integer values of x earned no points (and the value at x = 3 is incorrect). However, both points could have been earned in part (c) with those calculations if the student had gone on to observe that the value of y at x = 1 is less than the value of y at x = 0, and hence the function g is not increasing on the interval $0 \le x \le 4$. In part (d) the student earned 1 point for using the information about h(4) to write an equation for n and k but has no other work.