AP ${ }^{\circledR}$ CALCULUS AB

Question 3

The figure above is the graph of a function of x, which models the height of a skateboard ramp. The function meets the following requirements.
(i) At $x=0$, the value of the function is 0 , and the slope of the graph of the function is 0 .
(ii) At $x=4$, the value of the function is 1 , and the slope of the graph of the function is 1 .
(iii) Between $x=0$ and $x=4$, the function is increasing.

(a) Let $f(x)=a x^{2}$, where a is a nonzero constant. Show that it is not possible to find a value for a so that f meets requirement (ii) above.
(b) Let $g(x)=c x^{3}-\frac{x^{2}}{16}$, where c is a nonzero constant. Find the value of c so that g meets requirement (ii) above. Show the work that leads to your answer.
(c) Using the function g and your value of c from part (b), show that g does not meet requirement (iii) above.
(d) Let $h(x)=\frac{x^{n}}{k}$, where k is a nonzero constant and n is a positive integer. Find the values of k and n so that h meets requirement (ii) above. Show that h also meets requirements (i) and (iii) above.
(a) $f(4)=1$ implies that $a=\frac{1}{16}$ and $f^{\prime}(4)=2 a(4)=1$ implies that $a=\frac{1}{8}$. Thus, f cannot satisfy (ii).
(b) $g(4)=64 c-1=1$ implies that $c=\frac{1}{32}$.

When $c=\frac{1}{32}, g^{\prime}(4)=3 c(4)^{2}-\frac{2(4)}{16}=3\left(\frac{1}{32}\right)(16)-\frac{1}{2}=1$
(c) $g^{\prime}(x)=\frac{3}{32} x^{2}-\frac{x}{8}=\frac{1}{32} x(3 x-4)$
$g^{\prime}(x)<0$ for $0<x<\frac{4}{3}$, so g does not satisfy (iii).
(d) $\quad h(4)=\frac{4^{n}}{k}=1$ implies that $4^{n}=k$.
$h^{\prime}(4)=\frac{n 4^{n-1}}{k}=\frac{n 4^{n-1}}{4^{n}}=\frac{n}{4}=1$ gives $n=4$ and $k=4^{4}=256$.
$h(x)=\frac{x^{4}}{256} \Rightarrow h(0)=0$.
$h^{\prime}(x)=\frac{4 x^{3}}{256} \Rightarrow h^{\prime}(0)=0$ and $h^{\prime}(x)>0$ for $0<x<4$.
$2:\left\{\begin{array}{l}1: a=\frac{1}{16} \text { or } a=\frac{1}{8} \\ 1: \text { shows } a \text { does not work }\end{array}\right.$

1: value of c
$2:\left\{\begin{array}{l}1: g^{\prime}(x) \\ 1: \text { explanation }\end{array}\right.$
$4:\left\{\begin{array}{l}1: \frac{4^{n}}{k}=1 \\ 1: \frac{n 4^{n-1}}{k}=1\end{array}\right.$
1 : values for k and n
1 : verifications
$3 \quad 3$
according to (ii), $f(4)=1, \quad f^{\prime}(4)=1$

$$
\begin{aligned}
& f(x)=a x^{2} \rightarrow \quad 16 a=1 \quad a=\frac{1}{16} \\
& f^{\prime}(x)=2 a x \rightarrow 8 x=1 \quad a=\frac{1}{8} \\
& \frac{1}{16} \neq \frac{1}{8}
\end{aligned}
$$

\therefore it's impossible to find a value for a so that f meets requirement (ii).

Work for problem 3(b)
according to (ii), $g(4)=1, \quad g^{\prime}(4)=1$

$$
\begin{array}{ll}
g(x)=c x^{3}-\frac{x^{2}}{16} \rightarrow 64 c-\frac{16}{16}=64 c-1=1 & c=\frac{1}{32} \\
g^{\prime}(x)=3 c x^{2}-\frac{1}{8} x \rightarrow 3 \cdot 16 \cdot c-\frac{1}{2}=48 c-\frac{1}{2}=1 & c=\frac{1}{32}
\end{array}
$$

$$
\therefore c=\frac{1}{32}
$$

Work for problem 3(c)

$$
\begin{aligned}
& g^{\prime}(x)=\frac{3}{32} x^{2}-\frac{1}{8} x=\frac{3}{32} x\left(x-\frac{4}{3}\right) \\
& \therefore \quad x<0: g^{\prime}(x)>0, g(x) \text { increasing } \\
& 0<x<\frac{4}{3}: g^{\prime}(x)<0, g(x) \text { decreasing } \\
& \frac{4}{3}<x: g^{\prime}(x)>0, g(x) \text { increasing }
\end{aligned}
$$

$g(x)$ do not increase when $0<x<\frac{4}{3}$. So it does not meet requirement (iii)

Work for problem 3(d)
according to (ii), $h(4)=1, h^{\prime}(4)=1$

$$
\begin{aligned}
& h(x)=\frac{x^{n}}{k} \rightarrow \frac{4^{n}}{k}=1 \\
& h^{\prime}(x)=\frac{n}{k} \cdot x^{n-1} \rightarrow \frac{n}{k} \cdot 4^{n-1}=1
\end{aligned}
$$

$$
4^{n}=k, \quad 4^{n-1} \cdot n=k
$$

$$
\therefore n=4 \quad k=256
$$

$$
\therefore h(x)=\frac{x^{4}}{256}
$$

$$
h(0)=0, \quad h^{\prime}(0)=0 \quad \rightarrow \text { meet requirement }(i)
$$

$$
h^{\prime}(x)=\frac{4}{256} \cdot x^{3}=\frac{1}{64} x^{3} \quad x>0, h^{\prime}(x)>0 \quad \therefore h(x) \text { increasing }+ \text { meet requirement }
$$

END OF PART A OF SECTION II IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.

Work for problem 3(a)

$$
\begin{array}{lr}
f(x)=a x^{2} & \text { to sitisfy (ii) } \\
\begin{array}{ll}
f(x)=2 a x & \\
f(4)=1 \\
f(x)=16 a=1 & f^{\prime}(4)=1 \\
&
\end{array} \quad
\end{array}
$$

- There is no value a that satisfies

$$
f^{\prime}(x)=2 \cdot 4 a=1
$$ requirement (ii)

$$
2=\frac{1}{8}
$$

Work for problem 3(b)

$$
\begin{array}{lll}
g(x)=c x^{3}-\frac{x^{2}}{16} & g(4)=64 c-1=1 & c=\frac{1}{32} \\
g^{\prime}(x)=3 c x^{2}-\frac{x}{8} \cdot & g^{\prime}(4)=48 c-.5=1 & c=\frac{1}{32}
\end{array}
$$

$$
\begin{array}{ll}
\text { Work for problem 3(c) } & g^{\prime}(x)=\frac{1}{32} x^{3}-\frac{x^{2}}{16} \\
g^{\prime}(x)=\frac{3}{32} x^{2}-\frac{x}{8}=0 & g^{\prime}(0)=0 \\
x\left(\frac{3}{32} x-\frac{1}{8}\right)=0 & g^{\prime}(4)=1 \\
x=0 \quad x=1.333
\end{array}
$$

$$
\begin{array}{ll}
h(x)=\frac{x^{n}}{k} & \frac{4^{n}}{k}=1 \quad 4^{n}=k \\
h^{\prime}(x)=\frac{n x^{n-1}}{k} & \frac{n 4^{n-1}}{k}=1 \quad n 4^{n-1}=k
\end{array}
$$

$$
4^{n}=n 4^{n-1}
$$

END OF PART A OF SECTION II

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.

Work for problem 3(a)

$$
\begin{aligned}
& f(x)=a x^{2} \\
& y=a x^{2} \\
& 1=16 a \\
& a=\frac{1}{16} \\
& y=\frac{1}{16} x^{2}
\end{aligned}
$$

$$
a=\frac{1}{16}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { Work for problem } 3(b)) \\
x=4 \\
y=1 \\
1=64 c-1 \\
2=64 c \\
c=\frac{1}{32}
\end{array}
\end{aligned}
$$

Work for problem 3(c)

$$
\begin{aligned}
g(x) & =\frac{x^{3}}{32}-\frac{x^{2}}{16} \\
& =\frac{x^{3}-2 x^{2}}{32}
\end{aligned}
$$

$$
\begin{array}{ll}
x=0 & x=3 \\
y=0 & y=0 \\
x=1 & x=4 \\
y=-\frac{1}{32} & y=1 \\
x=2 & \\
y=0 &
\end{array}
$$

Work for problem 3(d)

$$
\begin{aligned}
& h(x)=\frac{x^{n}}{k} \\
& 1=\frac{4^{n}}{k} \\
& k=4^{n}
\end{aligned}
$$

END OF PART A OF SECTION II IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
-9-
© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP ${ }^{\circledR}$ CALCULUS AB
 2006 SCORING COMMENTARY (Form B)

Question 3

Overview

This problem presented three requirements that had to be satisfied by the graph of a function modeling the height of a skateboard ramp. Students were asked to investigate three families of functions that might be used for such a model. In part (a) they were asked to show that no quadratic of the form $a x^{2}$ would satisfy the second requirement. In part (b) they were asked to find the coefficient c for which the cubic $c x^{3}-\frac{x^{2}}{16}$ would meet the second requirement, but then show in part (c) that the cubic with this value of c does not meet the third requirement. Finally, in part (d) students were asked to find the values of n and k for which the power function $\frac{x^{n}}{k}$ would meet all three requirements.

Sample: 3A

Score: 9

The student earned all 9 points.

Sample: 3B
 Score: 6

The student earned 6 points: 2 points in part (a), 1 point in part (b), 1 point in part (c), and 2 points in part (d). The student's work is correct in parts (a) and (b). In part (c) the student earned 1 point for finding the derivative of g. The student does not explain why g is not increasing between $x=0$ and $x=4$ and so did not earn the second point in this part. In part (d) the student sets up correct equations to find n and k, earning 1 point for each equation, but does not find n or k and thus cannot show that the function h meets requirements (i) and (iii).

Sample: 3C
 Score: 3

The student earned 3 points: 1 point in part (a), 1 point in part (b), and 1 point in part (d). In part (a) the student finds the value of a for which $f(4)=1$, which earned the first point, but fails to show that this value of a does not work to meet requirement (ii). In part (b) the student uses the information about g to find the desired value of c. In part (c) the student's calculations of the values of the function g at integer values of x earned no points (and the value at $x=3$ is incorrect). However, both points could have been earned in part (c) with those calculations if the student had gone on to observe that the value of y at $x=1$ is less than the value of y at $x=0$, and hence the function g is not increasing on the interval $0 \leq x \leq 4$. In part (d) the student earned 1 point for using the information about $h(4)$ to write an equation for n and k but has no other work.

