AP® BIOLOGY 2006 SCORING GUIDELINES

Question 4

The evolution of circulatory systems allowed larger and more-complex animals to arise.

(a) **Describe** the respiratory and digestive systems' specialized structures that facilitate the movement of oxygen and glucose into the circulatory system of mammals. **(4 points maximum)**

Oxygen Uptake (2 points maximum)

Glucose Uptake (2 points maximum)

Alveoli/air sacs

Description of structures

- Grape-like clusters
- Large surface area in lungs or alveoli
- Thin-walled
- Moist lungs or alveoli
- Proximity to capillaries

• Villi/microvilli/plicae

Description of Structures

- Single cell layer
- Increased surface area
- Associated with capillaries
- Villi are finger-like projections
- Plicae are folds (of submucosa)
- Microvilli are hair-like projections (of cells)
- Enzymes related to carbohydrate digestion hydrolyze polymers to monomers (amylase, maltase, sucrase, lactase).
- (b) **Explain** how oxygen and glucose are transported within the circulatory system of mammals. **(4 points maximum)**

Oxygen Transport (3 points maximum)

RBC *or* Hemoglobin (oxyhemoglobin) attachment to oxygen

- Description of structure of RBC (biconcave, no nucleus or mitochondria) as related to oxygen transport OR Description of hemoglobin, e.g., iron, quaternary structure, number of O₂ molecules bound
- Cooperative binding (increased affinity as each molecule binds)
- Small percent dissolved in plasma
- 4-chambered heart allows separation of oxy/deoxy blood

Glucose Transport (1 point maximum)

- Dissolved in blood or carried in plasma (NOT merely "carried in blood")
- Explanation of small percent attached to Hb or other proteins, e.g., glycoproteins

(c) **Explain** the transfer of oxygen and glucose from the blood and into the active cells of mammals. **(4 points maximum)**

Oxygen Transfer (2 points maximum)

- (Simple) diffusion/down a concentration gradient
- Bohr effect described ($\downarrow pH$, $\uparrow CO_2$ causes dissociation)
- Pathway—hemoglobin, plasma, leaky capillary, interstitial fluid, cell membrane
- Description of membrane permeability, e.g., phospholipid bilayer and small molecules, polarity
- Binding to myoglobin increases movement into muscle

Glucose Transfer (2 points maximum)

- Facilitated diffusion/definition (to say diffusion alone is not enough)
- Down a concentration gradient
- Membrane transporter required for polar/large molecules, polarity
- Arterial pressure in capillaries
- Pathway as described for oxygen, plus transporter
- Insulin increases glucose uptake by cells
- Exchange occurs in the capillaries***
- *** Can only award this point once, either for glucose OR oxygen

- 4. The evolution of circulatory systems allowed larger and more-complex animals to arise. 4
 - (a) **Describe** the respiratory and digestive systems' specialized structures that facilitate the movement of oxygen and glucose into the circulatory system of mammals.
 - (b) Explain how oxygen and glucose are transported within the circulatory system of mammals.
 - (c) Explain the transfer of oxygen and glucose from the blood and into the active cells of mammals.

A) The resipiratory system moves oxygen into the
circulatory system beginning with either the
nose or the mouth. It moves down the throat (pharying)
past the epigliotis and down the tracker. The
trached splits at the lungs, creating brancial
tubes and then the smaller branciali. Eovering these
small tubes are aveoli, which greatly increase the
surface area and allow Oz to be moved into the
circulatory system of a mammal.
The digestive system's digestion of glucose begins
in the mouth (army lose), then as the tood makes down
through the pharyers, down the esophogus, into the
stomach, the digestion of carbohydrates stops. The
Good leaves the stomwach for the small intestine. Glucose
can be absorbed here. The small intentine is covered
with villi, which are covered with miorovilli. These
greatly increase surface area to aid in digestion.
The glucose absorbed here in then transported into
the bloodstream,

which is where the oxygen is transferred.

15

Glucose is dissolved in the plasma of the blood. It is transported along with oxygen through the arteries, veins, and capillaries. The heart acts as the pump that moves the blood. Veins have valves that prevent blood from flowing backward. Arteries have smooth muscle

0

Drygen is transferred into the active cells of mammals through capillary beds. The Oxygen diffuses through the thin capillary walls to an area of lower concentration (cells). Oxygen is going down its concentration gradient and therefore does this freely. Glucose is also moved down its gradient Unlike oxygen, which can name freely through the cell membrane, glucose must move through an internal protein. This is because alwayse is too

large to tet through the cell membrane

- 4. The evolution of circulatory systems allowed larger and more-complex animals to arise.
 - (a) **Describe** the respiratory and digestive systems' specialized structures that facilitate the movement of oxygen and glucose into the circulatory system of mammals.
 - (b) Explain how oxygen and glucose are transported within the circulatory system of mammals.
 - (c) Explain the transfer of oxygen and glucose from the blood and into the active cells of mammals.

The evolution of sinculatory systems allows
larger and more complex organisms to arise.
Morporated into this is the evolving complexity
of the respiratory and digestive systems. These
two systems compliment the sociations
System by providing the blood with oxygen
and glucose through specialized structures.
blood takes place in the lungs. Once air
blood takes place in the lungs of Once air
enters the lungs, it somes into small sacks
ralled alredi: Physic the alrebli's thin walls
are lined with capillaries. Due to active
transport, the oxygen in the air diffuse through
the alveoli and copillaries and into the blood?
The facilitation of gluesse into the circulatory
system occurs in the Atestines. Once food
O begins digestion in the mouth and stomache,
it exteres the intestines. The specialized
structures in the intestines that facillatate
glueose into the blood are the villi. The villi
I line the intestinal wall and absorb petrients
which then enter the blood stream Like the

4C

- 4. The evolution of circulatory systems allowed larger and more-complex animals to arise.
 - (a) **Describe** the respiratory and digestive systems' specialized structures that facilitate the movement of oxygen and glucose into the circulatory system of mammals.
 - (b) Explain how oxygen and glucose are transported within the circulatory system of mammals.
 - (c) Explain the transfer of oxygen and glucose from the blood and into the active cells of mammals.

the respiratory system has a system of two
bronchi, which consist of smaller bronchioles <
Even smaller aveolithe alveoli increase the
Surfult area of the lungs making the transport of
oxygen throughout the body < into the circulatory
system easier.
the digestive system releases enzymes into it's
smutures during digestion these enzymes aid in the
breaking down of tood into smaller substances. many
of the large polysacchander are broken down into di-or
monosucurundes which are then released into the
blood stream, This occurs with the sugar
gluise, which is released into the bipollatury
system of mammalo.
- oxyden is the circulatory systemis ransported by red blood (ells.

AP® BIOLOGY 2006 SCORING COMMENTARY

Question 4

Overview

This question required students to integrate principles of physiology from three mammalian systems. Students were asked to identify specialized structures that facilitate the movement of oxygen (alveoli in lungs, respiratory) and glucose (villi in small intestine, digestion) into the blood (circulatory). The students were asked to explain the transport of oxygen and glucose within the circulatory system and how oxygen and glucose are transferred from the circulatory system into the cells. Finally, the students had to recognize and explain the differences in specialized structures and processes for oxygen and glucose uptake, respectively, as well as the commonalities of both.

Sample: 4A Score: 10

In part (a) the response earned the maximum of 4 points by identifying the alveoli and the villi and by describing the increased surface area in each case. In part (b) the student correctly explains the association of oxygen to red blood cells, earning a point, and states that a small percentage is dissolved in the plasma, earning a second point. Glucose dissolved in the plasma earned a third point. In part (c) the student correctly explains the transfer of oxygen to the cells at the capillary bed, earning a point, and to an area of lower concentration, earning a second point. The explanation that glucose needs a transporter because of its larger size earned the final point.

Sample 4B Score: 6

In part (a) the response earned the maximum of 4 points by identifying the alveoli and the villi and describing the close association of the capillaries with each. In part (b) a point was earned for describing oxygen binding to hemoglobin, and another point for stating that glucose is dissolved in the plasma. No points were earned in part (c).

Sample: 4C Score: 4

In part (a) the response earned a point for the role of the alveoli, and another point for the increased surface they provide. A description of polymers being converted to monomers (polysaccharides to di- or monosaccharides) earned a point. In part (b) the association of oxygen to red blood cells earned a point. No points were earned in part (c).