The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
STATISTICS
SECTION II
Part B
Question 6
Spend about 25 minutes on this part of the exam.
Percent of Section II grade—25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

6. In order to monitor the populations of birds of a particular species on two islands, the following procedure was implemented.

Researchers captured an initial sample of 200 birds of the species on Island A; they attached leg bands to each of the birds, and then released the birds. Similarly, a sample of 250 birds of the same species on Island B was captured, banded, and released. Sufficient time was allowed for the birds to return to their normal routine and location.

Subsequent samples of birds of the species of interest were then taken from each island. The number of birds captured and the number of birds with leg bands were recorded. The results are summarized in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Island A</th>
<th>Island B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Captured in Subsequent Sample</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>Number with Leg Bands in Subsequent Sample</td>
<td>12</td>
<td>35</td>
</tr>
</tbody>
</table>

Assume that both the initial sample and the subsequent samples that were taken on each island can be regarded as random samples from the population of birds of this species.
(a) Do the data from the subsequent samples indicate that there is a difference in proportions of the banded birds on these two islands? Give statistical evidence to support your answer.

Simple random sample stated in the question.

\[\hat{P}_A = \frac{12}{180} = 0.066 \quad \hat{P}_B = \frac{25}{220} = 0.113 \]

Sample proportion of birds in island A with wings.

\[\hat{P}_A \times \frac{180}{12} = 12 > 10 \]
\[\hat{P}_B \times \frac{220}{25} = 35 > 10 \]

Conditions met.

Two sample proportion z test

\[z = \frac{\hat{P}_B - \hat{P}_A}{\sqrt{\frac{\hat{P}_A(1-\hat{P}_A)}{n_A} + \frac{\hat{P}_B(1-\hat{P}_B)}{n_B}}} = 2.193 \]

This corresponds to a p-value = 2(1 - 0.0286) [2 sided test] from tables = 0.0028,

which is a very small value.

The the 1% level, the p-value is < 1% (0.028% < 1%)

I reject Ho and conclude, at the 1% level, that there is a difference in the proportion of banded birds on these two islands.

GO ON TO THE NEXT PAGE.
(b) Researchers can estimate the total number of birds of this species on an island by using information on the number of birds in the initial sample and the proportion of banded birds in the subsequent sample. Use this information to estimate the total number of birds of this species on Island A. Show your work.

Island A: 200 banded, only \(\frac{1}{15} \) of a sample had banded birds.

\[\Rightarrow \text{total number of birds of this species on } A = 200 \times 15 = 3000 \]

(c) The analyses in parts (a) and (b) assume that the samples of birds captured in both the initial and subsequent samples can be regarded as random samples of the population of birds of this species that live on the respective islands. This is a common assumption made by wildlife researchers. Describe two concerns that should be addressed before making this assumption.

- One concern is the effect of placing bands on birds on their survival rate. If banded birds are more likely to be killed by predators or other animals than the second sample is less influenced by the bands.

- Another concern is that only birds that are easily caught (and are sick or physically poor birds) can be caught easily, which would not result in a simple random sample as other superior birds won't be included in the sample.
STATISTICS
SECTION II
Part B
Question 6
Spend about 25 minutes on this part of the exam.
Percent of Section II grade—25

Directions: Show all your work. Indicate clearly the methods you use, because you will be graded on the correctness of your methods as well as on the accuracy of your results and explanation.

6. In order to monitor the populations of birds of a particular species on two islands, the following procedure was implemented.

Researchers captured an initial sample of 200 birds of the species on Island A; they attached leg bands to each of the birds, and then released the birds. Similarly, a sample of 250 birds of the same species on Island B was captured, banded, and released. Sufficient time was allowed for the birds to return to their normal routine and location.

Subsequent samples of birds of the species of interest were then taken from each island. The number of birds captured and the number of birds with leg bands were recorded. The results are summarized in the following table.

```
<table>
<thead>
<tr>
<th></th>
<th>Island A</th>
<th>Island B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Captured in Subsequent Sample</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>Number with Leg Bands in Subsequent Sample</td>
<td>12</td>
<td>35</td>
</tr>
</tbody>
</table>
```

Assume that both the initial sample and the subsequent samples that were taken on each island can be regarded as random samples from the population of birds of this species.
(a) Do the data from the subsequent samples indicate that there is a difference in proportions of the banded birds on these two islands? Give statistical evidence to support your answer.

\(H_0: p_1 = p_2 \)
\(H_1: p_1 \neq p_2 \)

\(\hat{p}_1 = .0667 \)
\(\hat{p}_2 = .159 \)
\(n_1 = 180 \)
\(n_2 = 280 \)

\[n_1 \hat{p}_1 \geq 10 \]
\[n_1 (1 - \hat{p}_1) \geq 10 \]
\[n_2 \hat{p}_2 \geq 10 \]
\[n_2 (1 - \hat{p}_2) \geq 10 \]

\(z = 2.8557 \) and a
\(p \) value of .00429. At the .05 level of significance, we would reject the null hypothesis that \(p_1 = p_2 \) because the p-value, .00429, is less than .05, meaning that the \(z \) fell within the critical region, thus the proportion of banded birds on island A is not equal to the proportion of banded birds on island B.
(b) Researchers can estimate the total number of birds of this species on an island by using information on the number of birds in the initial sample and the proportion of banded birds in the subsequent sample. Use this information to estimate the total number of birds of this species on Island A. Show your work.

\[
\hat{p} = \frac{12}{180} = 0.0667
\]

\[n = 200\]

\[200 \times 0.0667 = 13.33\]

\[\frac{200}{X} = \frac{0.667}{180} \implies \frac{200}{X} \times 180 = 12\]

the total population is \(\leq 3000 \) birds of that species on the island.

(c) The analyses in parts (a) and (b) assume that the samples of birds captured in both the initial and subsequent samples can be regarded as random samples of the population of birds of this species that live on the respective islands. This is a common assumption made by wildlife researchers. Describe two concerns that should be addressed before making this assumption.

\[\frac{33}{250} \times 0.667 = 0.1646\]

- Perhaps the birds that they were able to capture were the weak or run down birds only, then they may not indeed be regarded as a random sample and are not representative of the entire population.

Also, perhaps the initial capture made the banded birds more susceptible to recapture, or something along these lines.
6. In order to monitor the populations of birds of a particular species on two islands, the following procedure was implemented.

Researchers captured an initial sample of 200 birds of the species on Island A; they attached leg bands to each of the birds, and then released the birds. Similarly, a sample of 250 birds of the same species on Island B was captured, banded, and released. Sufficient time was allowed for the birds to return to their normal routine and location.

Subsequent samples of birds of the species of interest were then taken from each island. The number of birds captured and the number of birds with leg bands were recorded. The results are summarized in the following table.

<table>
<thead>
<tr>
<th></th>
<th>Island A</th>
<th>Island B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Captured in</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>Subsequent Sample</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number with Leg Bands</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>in Subsequent Sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume that both the initial sample and the subsequent samples that were taken on each island can be regarded as random samples from the population of birds of this species.
(a) Do the data from the subsequent samples indicate that there is a difference in proportions of the banded birds on these two islands? Give statistical evidence to support your answer.

Since we are attempting to determine the dependency of two proportions, a χ^2 test would be most appropriate.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o tag</td>
<td>188</td>
<td>185</td>
</tr>
<tr>
<td>w/ tag</td>
<td>12</td>
<td>35</td>
</tr>
</tbody>
</table>

Observed values

$X^2 = \frac{(168-158.85)^2}{158.85} + \frac{(185-194.15)^2}{194.15} + \frac{(12-21.15)^2}{21.15} + \frac{(35-25.85)^2}{25.85}$

$= 0.1555$, df = 1

$P = 0.0042929$

There is strong evidence to reject H_0.

There is strong reason to believe that the samples indicate a difference of proportion of banded birds in Island A and Island B.
(b) Researchers can estimate the total number of birds of this species on an island by using information on the number of birds in the initial sample and the proportion of banded birds in the subsequent sample. Use this information to estimate the total number of birds of this species on Island A. Show your work.

\[\text{The proportion of banded birds in the sample is } 0.0625. \]

As the sample size (192) is sufficiently large, the central limit theorem allows us to assume an approximately normal distribution of sample proportions:

\[x \sim \text{Bin}(192, 0.0625), \text{Var}(x) = \frac{0.0625 \times (1 - 0.0625)}{192} \]

\[\frac{x}{192} \sim \text{N}(0.0625, 0.0002) \]

\[\text{A 95\% confidence interval for the population proportion will be } (0.0625 - 1.96 \times 0.0014, 0.0625 + 1.96 \times 0.0014) \]

\[= (0.0595, 0.0655) \]

(c) The analyses in parts (a) and (b) assume that the samples of birds captured in both the initial and subsequent samples can be regarded as random samples of the population of birds of this species that live on the respective islands. This is a common assumption made by wildlife researchers. Describe two concerns that should be addressed before making this assumption.

First is that birds may migrate or die of natural causes if the time between samplings is too long. Therefore, the second sample must be taken as soon as the birds are allowed time to return to their routine.

A second concern is that birds that have experienced captivity once may be easier to capture a second time. Therefore, the birds must be banded and released as soon as possible from the first sampling, and care must be taken against a convenience sample in the second.

-16-