

AP[®] Biology 2004 Scoring Guidelines Form B

The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSOT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of excellence and equity, and that committent is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2004 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. PSAT/NMSOT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service.

Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

Question 1

a) Provide three examples of adaptations found in various prokaryotes. Explain how these three adaptations have ensured the success of prokaryotes. (Max. 6 points)

- 1 pt for each example of an adaptation (3 are asked for)
- 1 pt for each explanation of how that adaptation ensured success

Some sample answers are:

nple Explanation	
• fast reproduction	• out-compete other organisms
asexual reproduction	• no need to risk change if environment constant
• genetic transfer (conjugation, transduction, transformation)	• can increase species variation
• plasmids	 provide new phenotypic capabilities
• diverse metabolism (N ₂ fixation, anaerobes, chemoautrotrophs, variety of substrates)	• can colonize habitats inhospitable to others
• extremophiles	• can colonize habitats inhospitable to others or explanation (thermophiles have altered enzymes so can live at high temperatures, halophiles have altered cell wall and compatible solutes to live in high salt
• endospores	concentrations)
• cell walls	resist harsh conditions
• small	 protect from osmotic lysis, protect from some
restriction enzymes	chemicals
	 high SA/Vol ratio, large number in small space protection from viruses

b) Discuss how prokaryotes early in Earth's history altered environments on Earth. (Max. 6 points)

- 1 pt for each identification of an impact on <u>early</u> Earth
- 1 pt for explanation of how environment was altered
- 1 pt for elaboration

Some sample answers are:

Ea	rly Impact	Ex	planation	Ela	aboration
•	provided oxygen	•	cyanobacteria produced oxygen that was previously not present	•	discussion of how photosynthesis produces oxygen discussion of ozone
•	production of	•	converted CO_2 (or methane) to	•	discussion of Calvin cycle
•	nitrogen fixation	•	converted N_2 to usable form	•	discussion of nitrogen cycle
•	origin of organelles	•	endosymbiotic origin of mitochondria/chloroplasts	•	discussion of evidence for endosymbiont theory

Question 1 (continued)

c) Discuss three ways in which prokaryotes continue to have ecological impact today. (Max. 6 points)

- 1 pt for each impact on Earth today (3 are asked for)
- 1 pt for explanation

Note:	Most answers	for part B	will also	work here.	Some samp	ole answers are:

Cu	rrent Impact	Explanation	
٠	chemical cycling (decomposition)	٠	explanation of role in a specific cycle (N, C, O, etc.)
٠	pathogenesis	•	specific example; example linked to ecology
٠	biotechnology	•	food industry, bioremediation; example must link to
			ecology

Question 2

Using measurements of dissolved oxygen concentration to determine primary productivity, design a controlled experiment to test the hypothesis that primary productivity is affected by either the intensity **or** the wavelength of light. In your answer, be sure to include the following.

Hypothesis (1 point)

- A statement of the specific hypothesis that you are testing (reasonable, testable and measurable)
- *Note:* No points for just stating which independent variable (IV) they are choosing Explanations provided in hypothesis may apply to last bullet

Experimental design (1 point each, Maximum 8 points)

A description of your experimental design (be sure to include a description of what data you would collect and how you would present and analyze the data using a graph)

Note: to get max. must earn at least one graph point

- identify/define control
- identify independent variable (IV)
- specify IV levels/range
- identify dependent variable (DV)
- explain how to measure DV
- identify constant (only one needed to earn point)
- identify appropriate aquatic organism (not limited to species name, e.g. phytoplankton ok)
- specify length of experiment or frequency of measurements
- specify number of replications
- specify statistical analysis
- graph correct possible line graph setup (axis, labels-units not necessary)
- graph correct line(s) (must imply comparison)

Results (1 point)

• A description of results that would support your hypothesis/explanation that relates to primary productivity

Question 3

Homeostasis of 3 parameters (Maximum of 4 points for each parameter chosen). Within each Parameter:

- mechanism appropriate for organism (1 point)
- explanation appropriate for mechanism (1 point)

Parameter 1 Blood glucose level				
<i>Example</i> of an organism	Mechanism	How homeostasis is maintained.		
Any appropriate animal	Insulin	Lowers blood glucose		
	Glucagon	Raises blood glucose		
	Hunger	Changes behavior (finding food)		
Parameter 2 Body Tem	perature			
<i>Example</i> of an organism	Mechanism	How homeostasis is maintained.		
Any appropriate animal	Sweating	Evaporative cooling		
	Shivering	Generates metabolic heat		
	Dilation of peripheral blood Increases surface of blood vess			
	vessels	exposed		
	Constriction of peripheral	Increases surface of blood vessels		
	blood vessels	exposed		
	Piloerection (not in humans)	Traps air to insulate against heat loss		
	Countercurrent heat exchange	Appropriate description for animal		
		choice		
An Ectotherm	Behavioral mechanisms	Appropriate link of behavior to change		
An Endotherm	Behavioral mechanisms	Appropriate link of behavior to change		
Parameter 3 pH of bloc	od			
<i>Example</i> of an organism	Mechanism	How homeostasis is maintained.		
Any appropriate animal	Breathing Rate	Altering carbon dioxide concentration		
	Hb-buffer	Altering H ion concentration		
	Protein buffer	Altering		
		H ion concentration		
	Kidney secretion	Altering		
		H ion concentration		
Parameter 4 Osmotic co	oncentration of blood			
<i>Example</i> of an organism	Mechanism	How homeostasis is maintained.		
Any appropriate animal	Kidney	Filtration, reabsorption		
	Secretion of ADH	Water reabsorption in CD		
	Take in water through mouth	Replaces water lost (hypertonic		
		environment)		
	Excrete dilute urine	Removes water gained (hypotonic		
		environment)		
Parameter 5 Neuron resting-membrane potential				
(Note	: either restoring or maintaining re	esting potential)		
Example of an organism	Mechanism	How homeostasis is maintained.		
Any appropriate animal	Na /K pump	Restores the ion gradient		
	Gated channels	Repolarizes membrane		

Question 4

Copyright © 2004 by College Entrance Examination Board. All rights reserved. Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

Same chosen kingdoms must be used for parts a, b, and c

a) Select <u>two</u> kingdoms and briefly describe three characteristics used to distinguish between members of one kingdom and members of the other. (Max 4 points)

- First distinguishing characteristic for kingdom 1 and kingdom 2
- Second distinguishing characteristic for kingdom 1 and kingdom 2
- Third distinguishing characteristic for kingdom 1 and kingdom 2
- Elaboration

Note: accept "has/does not have" as distinguishing

Describe three characteristics (at least one molecular and one cellular) that members of these two kingdoms share. (Max 4 points)

- Similar characteristics of same kingdom 1 and kingdom 2 molecular level
- Similar characteristics of same kingdom 1 and kingdom 2 cellular level
- Similar characteristics of same kingdom 1 and kingdom 2 any category
- Elaboration

c) Propose an explanation for the existence of similarities and differences between the two kingdoms. (Max 3 points)

- Explanation of difference
- Explanation of similarity
- Elaboration of either difference or similarity in both kingdoms

Note: Could be functional or evolutionary explanation