AP® Physics B (Operational)
2004 Sample Student Responses

The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
1. (15 points)

A roller coaster ride at an amusement park lifts a car of mass 700 kg to point A at a height of 90 m above the lowest point on the track, as shown above. The car starts from rest at point A, rolls with negligible friction down the incline and follows the track around a loop of radius 20 m. Point B, the highest point on the loop, is at a height of 50 m above the lowest point on the track.

(a)

i. Indicate on the figure the point P at which the maximum speed of the car is attained.

ii. Calculate the value v_{max} of this maximum speed.

\[
mg \cdot h_{\text{in}} = \frac{1}{2}mv^2
\]

\[
v = \sqrt{2gh}
\]

\[
v = \sqrt{2 \left[9.8 \cdot 90 \right]}\]

\[
v = 42 \text{ m/s}
\]
(b) Calculate the speed \(v_B \) of the car at point \(B \).

\[
\frac{1}{2} m v^2 + m g h = \frac{1}{2} m v_B^2 + p
\]

\[
\frac{1}{2} (700 \text{ kg})(42 \text{ m/s})^2 = \frac{m v_B^2}{r}
\]

\[
617400 \text{ J} = \frac{mv_B^2}{r}
\]

\[
v_B = 132.8 \text{ m/s}
\]

\[
\frac{1}{2} m v^2 + m g h = \frac{1}{2} m v_B^2 + p
\]

\[
\frac{1}{2} (200 \text{ kg})(28 \text{ m/s})^2 = 617400 \text{ J}
\]

\[
V_B = 28 \text{ m/s}
\]

(c)

i. On the figure of the car below, draw and label vectors to represent the forces acting on the car when it is upside down at point \(B \).

\[
\begin{aligned}
\text{d} & \quad \uparrow \\
\text{mg} & \quad \downarrow
\end{aligned}
\]

ii. Calculate the magnitude of all the forces identified in (c)i.

\[
\frac{m v^2}{r} = \frac{(700 \text{ kg})(28 \text{ m/s})^2}{20 \text{ m}} = 27440 \text{ N}
\]

\[
\text{mg} = 6860 \text{ N}
\]

\[
N = 20580 \text{ N}
\]

(d) Now suppose that friction is not negligible. How could the loop be modified to maintain the same speed at the top of the loop as found in (b)? Justify your answer.

The radius of the loop could be made smaller.

The loop could be constructed so that the bottom of the loop is not 10 m above the ground. Therefore, a larger portion of the system's energy can be focused on its velocity. (see initial equation - part b)

GO ON TO THE NEXT PAGE.
PHYSICS B
SECTION II
Time—90 minutes
6 Questions

Directions: Answer all six questions, which are weighted according to the points indicated. The suggested time is about 17 minutes for answering each of questions 1-4, and about 11 minutes for answering each of questions 5-6. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part, NOT in the green insert.

1. (15 points)
 A roller coaster ride at an amusement park lifts a car of mass 700 kg to point A at a height of 90 m above the lowest point on the track, as shown above. The car starts from rest at point A, rolls with negligible friction down the incline and follows the track around a loop of radius 20 m. Point B, the highest point on the loop, is at a height of 50 m above the lowest point on the track.

 (a)
 i. Indicate on the figure the point P at which the maximum speed of the car is attained.
 ii. Calculate the value v_{max} of this maximum speed.

 \[
 \begin{align*}
 \rho E &= KE \\
 mgh &= \frac{1}{2} mv^2 \\
 gh &= \frac{1}{2} v^2 \\
 2gh &= v^2 \\
 v &= \sqrt{2gh} \\
 v &= \sqrt{2 \times 9.8 \times 90} \\
 v &= \sqrt{1800} \\
 v &= 42.426 \text{ m/s}
 \end{align*}
 \]

GO ON TO THE NEXT PAGE.
(b) Calculate the speed v_B of the car at point B.

\[
\Delta \text{PE} = \text{KE}, \quad \frac{1}{2} m v^2 = 280000
\]
\[
\text{PE}_A - \text{PE}_B = \text{KE}
\]
\[
mgh_A - mgh_B = \text{KE}
\]
\[
(700 \times 10 \times 90) - (700 \times 10 \times 50) = \text{KE}
\]
\[
630000 - 350000 = \text{KE}
\]
\[
280000 = \text{KE}
\]

\[
\frac{1}{2} (700) (v^2) = 280000
\]
\[
350 v^2 = 280000
\]
\[
\frac{v^2}{350} = \frac{280000}{350}
\]
\[
\sqrt{v^2} = 800
\]
\[
v = 28.28 \text{ m/s}
\]

(c) On the figure of the car below, draw and label vectors to represent the forces acting on the car when it is upside down at point B.

\[
\text{wt} = mg
\]
\[
\text{wt} = 700 \times 10
\]
\[
\text{wt} = 7000 \text{ N}
\]

(d) Now suppose that friction is not negligible. How could the loop be modified to maintain the same speed at the top of the loop as found in (b)? Justify your answer.

The speed at the top of the loop could remain the same if the height at point A was increased. The car would gain more momentum and speed, and then when friction acted against the car it would slow to the desired speed. More potential energy at the top would result in greater kinetic energy at the bottom and greater speed. (Conservation of energy)