AP® Physics B
2004 Sample Student Responses
Form B

The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
3. (15 points)

A vibrating tuning fork is held above a column of air, as shown in the diagrams above. The reservoir is raised and lowered to change the water level, and thus the length of the column of air. The shortest length of air column that produces a resonance is \(L_1 = 0.25 \text{ m} \), and the next resonance is heard when the air column is \(L_2 = 0.80 \text{ m} \) long. The speed of sound in air at 20°C is 343 m/s and the speed of sound in water is 1490 m/s.

(a) Calculate the wavelength of the standing sound wave produced by this tuning fork.

\[
\lambda = \frac{L_2 - L_1}{2} = \frac{0.8 - 0.25}{2} \times 2 = 0.1 \text{ m}
\]

(b) Calculate the frequency of the tuning fork that produces the standing wave, assuming the air is at 20°C.

By the relation
\[
\nu = \lambda f
\]
we get
\[
2(0.1) = 101 \times f \Rightarrow f = 512 \text{ Hz}
\]
(c) Calculate the wavelength of the sound waves produced by this tuning fork in the water.

The frequency does not change (it is independent of medium).

\[1490 = \lambda \times 312 \]

\[\lambda = 4.8 \text{ m} \]

(d) The water level is lowered again until a third resonance is heard. Calculate the length \(L_3 \) of the air column that produces this third resonance.

Another half a wavelength would create a third resonance.

\[L_3 = L_2 + \frac{\lambda}{2} = 10.8 + \frac{1.8}{2} = 10.35 \text{ m} \]

(e) The student performing this experiment determines that the temperature of the room is actually slightly higher than 20°C. Is the calculation of the frequency in part (b) too high, too low, or still correct?

___ Too high ✔ Too low ___ Still correct

Justify your answer.

For each 1 K increase, the velocity of sound increases by 0.6 m/K.

The actual velocity \(v > 343 \text{ m/s} \).

For \(f = \frac{v}{\lambda} \), the actual frequency would be higher.
3. (15 points)

A vibrating tuning fork is held above a column of air, as shown in the diagrams above. The reservoir is raised and lowered to change the water level, and thus the length of the column of air. The shortest length of air column that produces a resonance is \(L_1 = 0.25 \text{ m} \), and the next resonance is heard when the air column is \(L_2 = 0.80 \text{ m} \) long. The speed of sound in air at 20°C is 343 m/s and the speed of sound in water is 1490 m/s.

(a) Calculate the wavelength of the standing sound wave produced by this tuning fork.

\[
\lambda = L_2 - L_1 = 0.80 - 0.25 \text{ m} = 0.55 \text{ m}
\]

(b) Calculate the frequency of the tuning fork that produces the standing wave, assuming the air is at 20°C.

\[
f = \frac{1}{\lambda} \times \text{Speed of sound in air}\]

\[
= \frac{1}{0.55 \text{ m}} \times 343 \text{ m/s} = 620 \text{ Hz}
\]
(c) Calculate the wavelength of the sound waves produced by this tuning fork in the water.

\[
\frac{\lambda_{\text{water}}}{\lambda_{\text{air}}} = \frac{1490}{343} = 4.3
\]

\[4.3 \times 0.55\text{m} = 2.4\text{m}\]

(d) The water level is lowered again until a third resonance is heard. Calculate the length \(L_3\) of the air column that produces this third resonance.

\[L_2 + \lambda = 0.80 + 0.55\]

\[= 1.35\text{m}\]

(e) The student performing this experiment determines that the temperature of the room is actually slightly higher than 20°C. Is the calculation of the frequency in part (b) too high, too low, or still correct?

_____ Too high _____ Too low _____ Still correct

Justify your answer.

At higher temperatures, waves would travel more quickly.