

AP® Computer Science AB
2004 Free-Response Questions

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the
College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in
college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the

PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of
excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2004 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Central,

AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the
College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the

College Entrance Examination Board and the National Merit Scholarship Corporation.
Educational Testing Service and ETS are registered trademarks of Educational Testing Service.

Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

The materials included in these files are intended for noncommercial use by
AP teachers for course and exam preparation; permission for any other use

must be sought from the Advanced Placement Program®. Teachers may
reproduce them, in whole or in part, in limited quantities, for face-to-face

teaching purposes but may not mass distribute the materials,
electronically or otherwise. This permission does not apply to any

third-party copyrights contained herein. These materials and any copies
made of them may not be resold, and the copyright notices

must be retained as they appear here.

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

2

COMPUTER SCIENCE AB
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK, REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN Java.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported where

appropriate.
• Assume that the implementations of the interfaces for stacks, queues, and priority queues (pages A4-A5 in the

Appendix) behave as specified.
• Assume that the implementation classes ListNode and TreeNode (page A3 in the Appendix) are used for

any questions referring to linked lists or trees, unless otherwise specified.
• ListNode and TreeNode parameters may be null. Otherwise, unless noted in the question, assume that

parameters in method calls are not null and that methods are called only when their preconditions are
satisfied.

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

3

 1. Consider designing and implementing a set of classes and interfaces to represent books, library items, and library
books.

(a) A library item contains two pieces of information: a unique ID (a String) and a holder (also a

String). If the library item has been checked out, the holder is the name of the person who has checked
out this item, otherwise the holder is null. The ID of a library item cannot change after it is created, but
the holder can change. Write the LibraryItem interface that abstracts this functionality.

(b) A book consists of an author and a title, neither of which can change once the book is created. The Book

class is represented as follows.

public class Book
{
 private String theAuthor;
 private String theTitle;

 public Book(String author, String title)
 { theAuthor = author; theTitle = title; }

 public String getAuthor()
 { return theAuthor; }

 public String getTitle()
 { return theTitle; }

}

 A library book is a book that is also a library item. Write the complete class LibraryBook,
implementing the required methods.

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

4

(c) A library is a collection of library items and supports the following operations.

 1. Add a library item to the library.

 2. Check out a library item by specifying its ID and new holder.

 3. Determine the current holder of a library item, given its ID.

 Consider the following incomplete class declaration.

public class Library
{
 private SomeClass items;

 public Library()
 { /* implementation not shown */ }

 public void add(LibraryItem theItem)
 { /* implementation not shown */ }

 public void checkout(String id, String holder)
 { /* implementation not shown */ }

 public String getHolder(String id)
 { /* implementation not shown */ }
}

 Choose a data representation for SomeClass from the java.util class library that allows the

operations add, checkout, and getHolder to be performed efficiently. In doing so, you must
explain how you are using your chosen java.util class to organize your data and give the expected
Big-Oh running time for each of these three operations in terms of n, the number of items in the library.

Your data representation (Circle one) How data is organized

 ArrayList LinkedList

 HashMap TreeMap

 HashSet TreeSet

Operations Expected Big-Oh efficiency

add

checkout

getHolder

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

5

 2. In approval voting there are at least two candidates and there are many voters. Each voter votes by submitting a
ballot that represents a set of candidates of whom the voter approves. The winner of the election is the candidate
that is listed on the most ballots, that is, the candidate who is approved by the most voters.

 For example, suppose there are four candidates: Chris, Jamie, Pat, and Sandy. Seven voters vote as follows
(order is unimportant, each ballot represents the set of candidates chosen by that voter).

Voter Ballot

0 Chris, Jamie
1 Chris, Sandy
2 Chris, Sandy, Pat, Jamie
3 Pat
4 Sandy, Jamie
5 Sandy, Pat, Jamie
6 Jamie, Chris

 The number of ballots on which each candidate was listed is as follows.

Candidate Number of ballots
Chris 4
Jamie 5
Pat 3
Sandy 4

 In this example, Jamie is the winner. If more than one candidate is tied with the most votes, then we consider the

set of such candidates to be the winning set for this election. For example, if Chris appeared on voter 3’s ballot
along with Pat, then Chris would tie Jamie with five votes and the winning set would be {Chris, Jamie}.

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

6

 We represent one voter’s ballot as a Set that contains the names (as Strings) of the candidates approved
by that voter. We represent the set of ballots for all voters in the election by the following partial class
declaration.

public class VoterBallots
{
 private Map voteCount; // key is the candidate name, value is the
 // number of votes received by that candidate

 // precondition: each entry in ballotList is a Set representing
 // one voter's ballot
 // postcondition: voteCount.get(candidate) is the total number of
 // times candidate appears on ballots in ballotList
 public VoterBallots(List ballotList)
 { /* to be implemented in part (a) */ }

 // postcondition: returns an Integer object with value equal to the
 // maximum number of votes associated with any
 // key in the Map voteCount
 private Integer maxVotes()
 { /* implementation not shown */ }

 // postcondition: returns a set containing the candidate(s)
 // with the most votes
 public Set candidatesWithMost()
 { /* to be implemented in part (b) */ }

 // other methods not shown
}

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

7

(a) Write the VoterBallots constructor. The constructor creates the Map voteCount and initializes it
to hold one entry for each candidate that appears on at least one ballot in ballotList. The associated
value for each candidate is the total number of ballots on which that candidate appears.

 A solution that creates an unnecessary new instance of a List or Set will not receive full credit.

 Complete the constructor below.

// precondition: each entry in ballotList is a Set representing
// one voter's ballot
// postcondition: voteCount.get(candidate) is the total number of
// times candidate appears on ballots in ballotList
public VoterBallots(List ballotList)

(b) Write the VoterBallots method candidatesWithMost. Method candidatesWithMost

returns a Set of the name(s) of the candidate(s) in voteCount with the most votes.

 In writing method candidatesWithMost, you may call the private helper method maxVotes.
Solutions that reimplement functionality provided by maxVotes, rather than invoking maxVotes, will
not receive full credit. A solution that creates an unnecessary new instance of a List or Set will not
receive full credit.

 Complete method candidatesWithMost below.

// postcondition: returns a set containing the candidate(s)
// with the most votes
public Set candidatesWithMost()

(c) Assume that there are C candidates and V voters. What is the expected time complexity, in Big-Oh

notation in terms of C and V, for your implementation of method candidatesWithMost ?

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

8

 3. This question involves reasoning about the code from the Marine Biology Simulation case study. A copy of the
code is provided as part of this exam.

 Consider defining a new type of fish, called PredatorFish, that eats other fish. At the beginning of a

simulation step, a PredatorFish examines the environment location directly in front of it. If a fish of any
kind is present, the PredatorFish eats that fish, removing it from the environment. Otherwise, if this is the
fifth consecutive turn in which the PredatorFish has not eaten, it dies. After the attempt to eat, if the
PredatorFish is still alive, it takes an ordinary turn, acting as an ordinary Fish in terms of breeding,
moving, and dying.

 A PredatorFish can be defined by inheriting behavior from the Fish class and adding or overriding

methods as appropriate.

(a) Write a partial class declaration for PredatorFish that includes the heading for the class, any instance
variables that must be declared in the class, and a two-parameter constructor that takes the environment and
the initial location of the PredatorFish as parameters. Do not show other constructors and methods.

(b) Write the new eat method for the PredatorFish class. This method will remove a Fish that is

directly in front of the PredatorFish if that environment location is not empty. The PredatorFish
remains in the same location. The boolean result that is returned from the eat method indicates
whether the PredatorFish was able to eat.

 Complete the PredatorFish method eat below.

// if the PredatorFish is able to eat, the eaten fish is removed and
// true is returned; otherwise, false is returned
protected boolean eat()

(c) One way to implement PredatorFish is to override the act method. A PredatorFish will first

eat if possible. If it is the fifth consecutive turn in which the PredatorFish has not eaten, the
PredatorFish dies. Otherwise, it acts as an ordinary Fish in terms of breeding, moving, and dying.

 You may use any of the accessible methods of the PredatorFish class and other public classes from
the case study program. Solutions that reimplement functionality provided by these methods, rather than
invoking these methods, will not receive full credit. Assume that the eat method works correctly,
regardless of what you wrote in part (b).

 Complete the PredatorFish method act below.

// acts for one step in the simulation
public void act()

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

9

 4. In some applications of priority queues, each data value can be added to the priority queue multiple times. In this
case, time and space can be saved by storing each data value only once, with a count field to keep track of the
number of times that the data value is in the priority queue.

 Class TreePriorityQueue is implemented using a binary search tree. Each TreeNode of the binary
search tree consists of an Item object and the links to the left and right subtrees. An Item object contains a
Comparable data value and a count of the number of occurrences of the data. When the count goes to zero as
a result of a deletion, the Item object is removed from the tree.

 The declarations for the TreePriorityQueue class and the Item class are shown below.

public class TreePriorityQueue implements PriorityQueue
{
 private TreeNode root;

 public TreePriorityQueue()
 { root = null; }

 //postcondition: returns true if the priority queue is empty;
 // otherwise, returns false
 public boolean isEmpty()
 { /* implementation not shown */ }

 // postcondition: obj has been added to the priority queue
 public void add(Object obj)
 { root = addHelper((Comparable)obj, root); }

 // postcondition: obj has been added to the subtree rooted at t;
 // the updated subtree is returned
 private TreeNode addHelper(Comparable obj, TreeNode t)
 { /* to be implemented in part (b) */ }

 // precondition: the priority queue is not empty
 // postcondition: a data value of smallest priority has been
 // removed and returned
 public Object removeMin()
 { /* implementation not shown */ }

 // precondition: the priority queue is not empty
 // postcondition: a data value of smallest priority is returned;
 // the priority queue is unchanged
 public Object peekMin()
 { /* to be implemented in part (a) */ }
}

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

 GO ON TO THE NEXT PAGE.

10

public class Item
{
 private Comparable data;
 private int count;

 public Item(Comparable d)
 { data = d; count = 1; }

 public void incrementCount()
 { count++; }

 // precondition: the count of this item is greater than 0.
 public void decrementCount()
 { count--; }

 public int getCount()
 { return count; }

 public Comparable getData()
 { return data; }
}

 For example, if the items 13, 11, 14, 11, 15, 14, and 14 are added to an initially empty

TreePriorityQueue, then the resulting binary search tree is as shown below
(with 11 occurring two times, 14 occurring three times, and 13 and 15 each occurring one time).

2004 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

Copyright © 2004 by College Entrance Examination Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for AP students and parents).

11

(a) Write the TreePriorityQueue method peekMin. Method peekMin returns the minimum data
value in the priority queue.

 Complete method peekMin below.

// precondition: the priority queue is not empty
// postcondition: a data value of smallest priority is returned;
// the priority queue is unchanged
public Object peekMin()

(b) Write the TreePriorityQueue private method addHelper, which adds obj to the subtree

rooted at t. If a node containing an Item with data obj is already in the subtree, addHelper
increments the count; otherwise, addHelper adds a new node containing an Item with data obj
and a count of 1 to the subtree, maintaining the binary search tree property. Method addHelper returns a
reference to the root of the resulting subtree.

 Complete method addHelper below.

// postcondition: obj has been added to the subtree rooted at t;
// the resulting subtree is returned
private TreeNode addHelper(Comparable obj, TreeNode t)

END OF EXAMINATION

