The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
Work for problem 2(a)

\[\int_{0}^{1} \left(2x(1-x) - (3(x-1)\sqrt{x}) \right) \, dx = \boxed{1.133} \]
Work for problem 2(b)

\[\pi \int_{0}^{1} \left(2 - 3(x - 1)\sqrt{x}\right)^2 - (2 - 2x(1-x))^2 \, dx = 14.179 \]

Work for problem 2(c)

\[h(x) = kx(1-x) \quad 0 \leq x \leq 1 \]

\[\int_{0}^{1} \left[kx(1-x) - 3(x-1)\sqrt{x} \right]^2 \, dx = 15 \]
Work for problem 2(a)

\[f(x) = 2x(1-x), \quad 0 \leq x \leq 1 \]
\[g(x) = 3(x-1)\sqrt{x} \]

Area under \(f(x) \) = \(\int_{0}^{1} 2x(1-x) \, dx \) \approx 0.333 = \frac{1}{3} \)

Area under \(g(x) \) = \(\int_{0}^{1} 3(x-1)\sqrt{x} \, dx \) \approx -0.8

To make area under \(g(x) \) positive for total area

\[\left| -0.8 \right| = 0.8 \]

Area enclosed by \(f(x) \) & \(g(x) \) = \(\frac{1}{3} + 0.8 = \frac{1}{3} + \frac{8}{10} = \frac{1}{3} + \frac{4}{5} = \frac{5}{15} + \frac{12}{15} = \frac{17}{15} \approx 1.1333 \)
Work for problem 2(b)

Volume of solid

\[\pi \int_{0}^{1} (R^2(x) - r^2(x)) \, dx \]
\[\pi \int_{0}^{1} (2 - 3(x-1) - \sqrt{x})^2 - (2 - 2x(1-x))^2 \, dx \]
\[= \frac{103\pi}{20} \approx 16.179 \]

Work for problem 2(c)

\[h(x) = k \times (1-x) \]

\[A_0 = 8^2 \]

\[S = h(x) - g(x) \]

\[A_{new} = \pi \int_{0}^{1} kx(1-x) - 3(x-1)\sqrt{x} \, dx \]

Use to find a 'k' value.