

AP[®] Biology 2003 Scoring Guidelines Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service[®] (ETS[®]), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acom logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

Question 1

A difference between prokaryotes and eukaryotes is seen in the organization of their genetic material.

- (a) **Discuss** the organization of the genetic material in prokaryotes and eukaryotes.
- (b) **Contrast** the following activities in prokaryotes and eukaryotes
 - Replication of DNA
 - Transcription or translation
 - Gene regulation
 - Cell division

(a) 4 points maximum

(1 point for each bullet; each contrast pair must include 1 bullet from prokaryote and 1 bullet from eukaryote)

Prokaryote	Eukaryote
No introns	Introns
• Location: not in nucleus	Location: nucleus (and Mito&Chloro)
• Circular	• Linear
No histones	• Histones
One chromosome, usually	 >one chromosome, usually
Plasmids common	Plasmids rare (yeast)
Supercoiled DNA	Chromatin DNA

(b) 8 points maximum

(each activity has a maximum of 2 points; each contrast pair must include 1 bullet from prokaryote and 1 bullet from eukaryote)

Activity	Prokaryote	Eukaryote	
DNA Replication Single origin		Multiple origin	
	No telomeres	Telomeres	
	Location: Cyto/Cell Memb	Location: Nucleus (and Mito & Chloro)	
Transcription	No RNA Processing	RNA processing	
	Location:Cyto	Location: Nucleus (and Mito & Chloro)	
	Monocistronic	Polycistronic	
	Initiation:sigma	Initiation: initiation factors	
<u>or</u>	1 RNA polymerase	3 RNA polymerase	
Translation	T+T coupled	T+T not coupled	
30s/40s Location: cyto		40s/60s	
		Location:also in Mito & Chloro	
Gene Regulation Operon		No operon	
	+&- control	+control, primarily	
	Enhancers rare	Enhancers common	
	none	Methylation, acetylation, Barr bodies	
Cell Division No mitosis/Meiosis		Mitosis/Meiosis	
	Rapid	Slower	
	No spindles	Spindles	

Question 2

Hormones play important roles in regulating the lives of many living organisms.

(a) For TWO of the following physiological responses, explain how hormones cause the response in plants.

- increase in height
- adjustment to change in light
- adjustment to lack of water
- (b) For TWO of the following physiological responses, explain how hormones cause the response in animals.
 - increase in height
 - adjustment to change in light
 - adjustment to lack of water
- (c) **Describe** TWO different mechanisms by which hormones cause their effects at the cellular level.

Note: Tables only provide examples. They are not inclusive.

(a) 4 points maximum (Each bullet 2 points maximum).

Ac	tivity	Response	How Hormone Causes Response
•	Increase in Height	Stem elongation (meristem)	Lowers pH increasing osmosis Loosens cell wall (cellulose x- links)
•	Adjustment to change in light	Tropism Stomatal closing Flowering Seed germination Shade avoidance Decrease light – increase height	Disproportionate cell elongation Causes loss of guard cell turgor Phytochrome shift Phytochrome shift Phytochrome shift Disproportionate cell elongation
•	Adjustment to lack of water	Stomates close Root branching Dormancy	Causes loss of guard cell turgor Differential cell growth Production of dehydration tolerance proteins

Question 2 (continued)

(b) 4 points maximum (Each bullet 2 point maximum)

	Response	How Hormone Causes Response
• Increase in Height	Growth (identify a tissue	Stimulates cell proliferation
	influenced)	Stimulates liver>IGF
• Adjustment to change in light	Biorhythms (repro/sleep)	Day/night fluctuations in production
	Skin Pigmentation	Melanin prod/distribution fluctuations
Adjustment to lack Antidiuresis of water		Nephron increases water reabsorbtion Nephron increases Na ⁺ reabsorbtion
	Thirst	Stimulates Hypothalamus

(c) 4 points maximum

	Mechanism	Effect	
•	receptor in cell	•	Primarily influences transcription
•	receptor in cell membrane	•	Primarily activates proteins already present (through signal transduction)

Question 3

Water is important for all living organisms. The functions of water are directly related to its physical properties.

- (a) Describe how the properties of water contribute to TWO of the following.
 - transpiration
 - thermoregulation in endotherms
 - plasma membrane structure
- (b) Water serves as a reactant and a product in the carbon cycle. Discuss the role of water in the carbon cycle.
- (c) **Discuss** the impact of one human activity on the water cycle.

(a) 4 point maximum

2 points for each process / one point per category in the context of linking property to contribution

Process	Property	Contribution to Process	
Transpiration	polarity/cohesiveness	water movement	
	high heat of vaporization	reduces water loss	
	water potential	water movement	
Thermoregulation	high heat of vaporization	evaporative cooling	
	high specific heat	heat buffer	
Plasma membrane	polarity	arrangement of phospholipids	

(b) 4 points maximum

- Reactant in photosynthesis or equation $(H_2O + CO_2 \leftrightarrow C_6H_{12}O_6 + O_2)$
- Specific role of water in photosynthesis
- Product in respiration or equation $(H_2O + CO_2 \leftrightarrow C_6H_{12}O_6 + O_2)$
- Specific role of water in respiration
- Oceanic carbon storage $CO_2 + H_2O \leftrightarrow H_2CO_3$
- Role of hydrolysis in catabolism
- Solvent for carbon based metabolism

(c) **3 points maximum** (only **one** activity may be scored)

Activity	Description of impact on	Elaboration of either activity or	
	the water cycle	description (clear linkage)	
ground water diversion	decreased transpiration	possible climate effects	
deforestation	decreased transpiration	possible climate effects	
acid rain production*	decreased transpiration	disruption of weather patterns	
global warming*	increased evaporation	disruption of weather patterns	
	melt ice cap	rise in sea level causing flooding	

* Did not score activity point for mention of these terms unless they were properly linked to an impact on the water cycle

Question 4

Biologists are interested in preserving the diversity of living organisms on the planet.

- (a) Explain THREE of the following processes or phenomena, using an appropriate example for each.
 - Mutation
 - adaptive radiation
 - polyploidy
 - population bottlenecks
 - growth of the human population

(b) For each process or phenomenon you selected in (a), discuss its impact on the diversity of life on Earth.

One point for each definition, example, impact and explanation.

	Definition	Example	Impact on diversity of life on earth	Explanation
mutation	change in DNA	deletion/insertion point mutation chromosomal aberration	increase or decrease	altered proteins new geno/phenotypes raw material for selection
adaptive radiation	multiple species from 1 ancestor	Galapagos finches mammals angiosperms	increase	new species co-existence of species
polyploidy	more than 2 complete chromosome sets	plants (common) animals (rare e.g., fish, amphibians)	increase	development of new species (autoploidy speciation, alloploidy speciation)
population bottlenecks	sudden/drastic decrease in population size (usually natural)	cheetahs northern elephant seals	decrease	random/not adaptive population not representative of original smaller gene pool
growth of human population	near carrying capacity exponential evidence from age pyramid	rapid increase – developing countries slow growth - U.S. no growth - Italy	decrease	Use of resources leads to extinction of other species