

AP[®] Biology 2003 Scoring Guidelines

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service[®] (ETS[®]), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT[®], the PSAT/NMSQT[®], and the Advanced Placement Program[®] (AP[®]). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

Question 1

In fruit flies, the phenotype for eye color is determined by a certain locus. E indicates the dominant allele and e indicates the recessive allele. The cross between a male wild-type fruit fly and a female white-eyed fruit fly produced the following offspring.

	Wild-type	Wild-type	White-eyed	White-eyed	Brown-eyed
	Male	Female	Male	Female	Female
F1	0	45	55	0	1

The wild-type and white-eyed individuals from the F1 generation were then crossed to produce the following offspring.

F2	23	31	22	24	0

- (a) <u>Determine</u> the genotypes of the original parents (P generation) and <u>explain</u> your reasoning. You may use Punnett squares to enhance your description, but the results from the Punnett squares must be discussed in your answer.
- (b) Use a Chi-squared test on the F2 generation data to analyze your prediction of the parental genotypes. <u>Show</u> all your work and <u>explain</u> the importance of your final answer.
- (c) The brown-eyed female in the F1 generation resulted from a mutational change. <u>Explain</u> what a mutation is, and <u>discuss</u> two types of mutations that might have produced the brown-eyed female in the F1 generation.

Critical Values	of the Chi-Squared Distribution	

Probability (p)	Degrees of Freedom (df)				
	1	2	3	4	5
0.05	3.84	5.99	7.82	9.49	11.1

The formula for Chi-squared is:

Г

$$X^2 - \sum \left[\frac{(\text{o-e})^2}{\text{e}} \right]$$

where o = **observed** number of individuals

e = **expected** number of individuals

 Σ = the sum of the values (in this case, the differences, squared, divided by the number expected)

Question 1 (continued)

(a) Maximum 4 points

- 1 pt Genotypes of the parents (words or symbols) $X^{E}Y$ (or $X^{+}Y$) and $X^{e}X^{e}$
- 1 pt Discuss/show how these resulted in this F1 (may be annotated Punnett)
- 1 pt Explain that it is a sex-linked (X-linked) gene (not just the word)
- 1 pt How you know which type is dominant
- 1 pt F2 results (may be annotated Punnett square)

(b) Maximum 4 points

- 1 pt Correct F2 hypothesis (1:1:1:1; or 25/genotype)
- 1 pt Show work (components): $o e o e (o e)^2 (o e)^2/e$
 - (or correct numbers (4/25 + 36/25 + 1/25 + 9/25 = 50/25 = 2; or at least the last term)
- 1 pt Sum: correct chi-square result ~ 2.0 or 1.85
- 1 pt degrees of freedom = 3 (critical value is 7.82)
- 1 pt correct interpretation of chi-square in terms of p
 p = probability that the difference between the observed and the expected value is due to chance alone. This p value shows we accept our hypothesis. The null hypothesis is supported in this case.
 (alternative: 2 X² tests of white *vs.* red males <u>and</u> white *vs.* red females)

(c) Maximum 4 points

- 1 pt Explain what a mutation is: (heritable) change in the DNA (code)
- 1-2 pts Discuss 2 types of mutations
 - May be: Point mutation, frameshift (deletion/duplication), insertion, transposition, break, inversion within gene, base substitution, nonsense/stop, missense)
 - May NOT be: chromosomal aberration, nondisjunction, silent/neutral, transcription or translation or processing error
- 1 pt Molecular or biochemical elaboration beyond the explanation required

Question 2

Regulatory (control) mechanisms in organisms are necessary for survival. Choose **THREE** of the following examples and <u>explain</u> how each is **regulated**.

- (i) Flowering in plants
- (ii) Water balance in plants
- (iii) Water balance in terrestrial vertebrates
- (iv) Body temperature in terrestrial vertebrates

(i) Maximum 4 points

(each box represents an independent 1 point each)

change in photocycle/photoperiod	long day (short night) plants flower only if night is shorter than a critical duration or short day (long night) plants flower only if night exceeds a critical duration	phytochromes $P_r \Leftrightarrow P_{fr}$ (night) (day) unknown "florigen" converts shoot-meristem to floral-meristem or breaks bud dormancy leaf is photoreceptor organ gibberellins $\rightarrow \uparrow$ flowering auxins, ethylene, or abscisic acid \rightarrow \checkmark flowering
change in temperature pattern (vernalization)	specific duration of cold exposure or specified sequence of temperature changes initiate flowering	can be independent of (day neutral) or dependent on photocycle changes unknown "florigen" transitions shoot meristem to floral meristem or break bud dormancy gibberellins $\rightarrow \uparrow$ flowering auxins, ethylene, or abscisic acid \rightarrow \downarrow flowering
nutritional status	plant has enough nutritional resources to support flowering	can be independent (day neutral) or co- dependent of photocycle changes unknown "florigen" transitions shoot meristem to floral meristem or break bud dormancy gibberellins $\rightarrow \uparrow$ flowering auxins, ethylene, or abscisic acid \rightarrow \downarrow flowering

Question 2 (continued)

(ii) Maximum 4 points

Regulatory mechanism (must earn one "explanation point" before awarding a second "mechanism point")	Explain how the regulatory mechanism affects water balance: (2nd point must come from explanation before 3rd point can be awarded)	Elaboration (max 1 point)
- stomates/guard cells	closed ≈ ↓water loss (evap/transpir) open ≈ ↑water loss (evap/transpir)	ion, water influx/efflux from guard cells; turgid/flaccid (stomates: open/closed)
- altered stomate location or "sunken stomates"	stomates more abundant in more humid, cooler regions of the plant	
- cuticle thickening	↓water loss (evap/transpir)	waxy polymers resist water movements, cutin
- increased succulence	water storage	
- smaller leaves	↓water loss (evap/transpir)	
- drop leaves	↓water loss (evap/transpir)	abscisic acid
- altered leaf angle	↓water loss (evap/transpir)	less surface area directly exposed to sun's heat
- water potential in roots lower than that of soil	permits water uptake, even in saline soils	production of organic osmolytes in roots
- deeper root growth	reach deeper water	
- altered metabolic pattern (e.g., CAM)	stomates open only at night: ↓water loss (evap/transpir)	cooler, more humid conditions during the night
- increase cellular turgidity	opposes osmotic force	cell wall resists influx until pressure gradient offsets osmotic pressure

Question 2 (continued)

Question 2 (continued)					
(iii) Maximum 4 points Hypothalamus is water-regulatio (1 point max)	on center	Hypothalamus regulates neural circuits in behavior of thirst (1 point max)			
Regulatory mechanism/ detector/ signal (must earn one "explanation point" before awarding a second "mechanism point")	mechanism (2nd point	bw the regulatory n affects water balance. must come from n before 3rd point can be	Elaboration (1 point max)		
<u>Hyperosmotic conditions</u> result in increased secretion of Vasopressin (a.k.a. Anti- Diuretic Hormone = ADH) from the hypothalamus/ (posterior) pituitary (gland)	reduces wa	ter loss in urine	↑ water permeability in descending limb of loop of Henle, distal tubule, or collecting duct causes greater reabsorption of water [[hyposmotic opposite]]		
[[hyposmotic opposite]] Hypovolemic conditions	[[hypo	smotic opposite]]	decreased renal blood pressure and filtrate		
activate RAAS system (renin angiotensin activating system), especially Ang II from kidney/blood	•	reases (Na ⁺) and water on in proximal tubule;	flow increase renin release; renin activates angiotensinogen to Ang I, which is readily converted to Ang II juxtaglomerular apparatus (JGA)		
Hypovolemic/ RAAS active Ang II stimulates hypothalamic thirst center	Ang II inci	reases thirst	"dry mouth" perception		
<u>Hypovolemic/ RAAS active</u> Ang II stimulates secretion of aldosterone from adrenal (cortex) gland	water reab	te increases (Na ⁺) and sorption (& K^+ in distal tubule			
<u>Hypervolemic conditions</u> (excess blood volume) cause increased secretion of Atrial		Na^+) and water on in distal tubule	inhibits renin and aldosterone release; causes vasodilation of afferent arterioles		
Natriuretic Peptide (ANP)					
- loop of Henle	loon longth	α urine osmolarity			
- type of nitrogenous waste	<u> </u>	ater in excretion	compare ammonia, urea, and uric acid for water solubility or toxicity		
- development of specialized transport epithelia, e.g., salt glands	less water	loss in osmoregulation			
- cloaca development	use less wa	ater in excretion			
- large intestine/ colon	greater sur ion absorp	face area for water and tion			
- water-resistant body surface	decrease w surface	ater loss from body			
 behavioral avoidance of dessicating conditions 	nocturnal h due to heat	habits reduce water loss			

Question 2 (continued)

(iv) Maximum 4 points			
Hypothalamus is thermostat (1 point max)	Thermostat reset by different conditions; autonomic/other neural outputs influence body temperature (1 point max)	Fever, hypothermia (1 point max)	
1 Regulatory mechanism (must earn one "explanation point" before awarding a second "mechanism point")	Explain how the regulatory mechanism affects temperature regulation. (2nd point must come from explanation before 3rd point can be awarded)	Elaboration (1 point max)	
- move to a location that is: cooler if hot (e.g., shade), or warmer if cold (e.g., bask)	<pre></pre>		
- sweat/ perspire when hot	↑ evaporative cooling		
 lick body surface when hot pant when hot 			
- alter insulation (fur, feathers): flat when hot	<pre></pre>	↓boundary layer ↑boundary layer	
 ↑ peripheral: vasodilation when hot, or vasoconstriction when cold 	blood at periphery to theat loss blood kept in core of body		
- \uparrow shivering when cold	↑heat production	contraction/relaxation cycling in skeletal muscles	
- ↑non-shivering thermogenesis when cold	Theat production	metabolism of brown fat	
- 1 activity when cold	↑metabolic heat production		
 activate heat-shock proteins when hot 	intracelluar protection of protein structure	HSPs are chaperones that guide protein folding	
- torpor estivate when hot	↓ activity & ↓ metabolism → ↓ metabolic heat	sometimes triggered by changes in day length	
hibernate when cold	\downarrow activity and slower metabolism \downarrow heat loss during cold winter	sometimes triggered by changes in day length	
- ↑ surface area (e.g., big ears) - ↓ surface area	<pre>↑heat loss</pre> ↓heat loss		
- ↓ body fat	↑heat loss		
- shed insulation when hot - grow insulation when cold	↑heat loss ↓heat loss	↑boundary layer	
- ↑metabolic rate when cold	↑heat production	↑thyroid hormones	
- ↓metabolic rate when hot	↓heat production	↓thyroid hormones	
 - ↓surface area:volume - counter-current heat exchange/blood flow 	 ↓heat loss ↓heat loss by keeping core warmer than periphery 	heat transferred from arterial to venous vessels	

Question 3

(c) Organisms demonstrate exponential (r) or logistic (K) reproductive strategies. Explain these two strategies and discuss how they affect population size over time.

****Global point:** 1 point: Carrying capacity definition: The number of individuals of a particular species that an environment can support; determined by the availability of resources. Point can be earned in any section.

(a) Maximum 3 points

Copyright © 2003 by College Entrance Examination Board. All rights reserved. Available at apcentral.collegeboard.com.

Question 3 (continued)

(b) Maximum 4 points

3 points: Three biologically sound factors that discuss the rise or fall of population size. Only the first three factors discussed will be scored. Commonly used density-dependent factors include limited resources, predation (predator/prey cycles), disease, and reproduction. Density-independent factors must reflect the <u>periodic</u> nature of the curve and cannot include cataclysmic events such as earthquakes, volcanoes, etc.

For each example to be legitimate, it must

- have a biologically sound explanation/discussion
- have a cause and an effect
- fit the graph in phase B

1 point for explanation of a complete cycle (rise and fall of population size.)

(c) Maximum 4 points

Explanation: 2 points (1 each for r and for K) Each explanation must have at least **two** characteristics from the table

<i>r</i> -strategists	K-strategists
Many young	Few young
Little energy investment in each	High energy investment in each
Small young	Large young
Rapid sexual maturation	Slow sexual maturation
Higher incidence of asexual reproduction	Higher incidence of sexual reproduction
Brief reproductive life span	Long reproductive life span
Little or no parental care	Lots of parental care
"Big bang" (semelparous) reproduction	Many reproductive events (iteroparous)
Unpredictable environment	Predictable environment
Population control by density-independent	Population control by density-dependent factors
factors	Long life span
Short life span	Type I survivorship curve; many offspring
Type III survivorship curve; few offspring	survive
survive	Prone to extinction
Not prone to extinction	Lower reproductive capacity
Higher reproductive capacity	

Question 3 (continued)

Discussion: 2 points (1 point each) Note: No points for a graph without an explanation

r-strategists

K-strategists

boom/bust (great fluctuations) in population size

population stabilizes around K (carrying capacity)

Question 4

Death is a natural and necessary part of life cycles at all levels of organization.

- (a) <u>Discuss</u> **TWO** examples of how cell death affects the development and functioning of a multicellular organism.
- (b) <u>Discuss</u> **ONE** example of how substances are degraded and reused in cells.
- (c) <u>Discuss</u> the evolutionary significance of death.

(a) Maximum 6 points (3 points per example)

- 1 pt. Example of cell death leading to a change in development
- 1 pt. Example of cell death leading to a change in function
- 1 pt. Discussion of *how* cell death occurs or an extension of cell death significance

Examples (categories) of cell death

- elimination of cells, tissues, and organs
- tissue remodeling / reconstruction
- destruction that poses a threat to the survival of the organism
- repair / maintenance
- cell death as a result of severe injury
- cell death as a result of exposure to toxins / altered chemical balance
- cell death as a result of aging

(b) Maximum 3 points

- 1 pt. Substance: *how* degraded to product
- 1 pt. Product: *how* reused in cells
- 1 pt. Discussion / elaboration on process to degrade or reuse
- * "Energy" is not a substance in this response.

(c) Maximum 3 points

Relate evolution to death:

- change in allele or phenotype frequency / removal of individuals from a population based on phenotype / differential reproduction
- selection based on variation
- competition (struggle, resource availability, overpopulation) having an effect on reproductive success
- speciation / mass extinction / adaptive radiation
- genetic drift
- cell death genes preserved early in evolution
- mechanism of apoptosis (changes that occur within the cell)
- activation / inhibition of cell death genes
- effect on embryonic development