The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part, NOT in the green insert.

E&M. 1.

A spherical cloud of charge of radius \(R \) contains a total charge \(+Q \) with a nonuniform volume charge density that varies according to the equation

\[\rho(r) = \rho_0 \left(1 - \frac{r}{R}\right) \quad \text{for} \quad r \leq R \quad \text{and} \quad \rho = 0 \quad \text{for} \quad r > R, \]

where \(r \) is the distance from the center of the cloud. Express all algebraic answers in terms of \(Q, R, \) and fundamental constants.

(a) Determine the following as a function of \(r \) for \(r > R \).

i. The magnitude \(E \) of the electric field

\[\oint E \cdot dA = \frac{Q}{\varepsilon_0} \quad \Rightarrow \quad E(4\pi r^2) = \frac{Q}{\varepsilon_0} \quad \Rightarrow \quad E = \frac{Q}{4\pi \varepsilon_0 r^2} \]

ii. The electric potential \(V \)

A spherical distribution acts as a point charge so

\[V = \frac{Q}{4\pi \varepsilon_0 r} \]

(b) A proton is placed at point \(P \) shown above and released. Describe its motion for a long time after its release.

The proton experiences a force to the right from the electric field. The field strength decreases with distance, so the acceleration of the proton decreases with time until it reaches a final constant speed.
(c) An electron of charge magnitude e is now placed at point P, which is a distance r from the center of the sphere, and released. Determine the kinetic energy of the electron as a function of r as it strikes the cloud.

\[
\begin{align*}
\text{Energy conserved} \\
\varepsilon t + \varepsilon v_i &= \varepsilon f + \varepsilon f \\
\varepsilon t + \varepsilon v_i &= \varepsilon f + \varepsilon f \\
\varepsilon t - \varepsilon v_2 &= \varepsilon f \\
\varepsilon t - \varepsilon v_2 &= \varepsilon f \\
\frac{eQ}{4\pi\varepsilon_0 r} + \frac{eQ}{4\pi\varepsilon_0 R} &= k(r) = \frac{eQ}{4\pi\varepsilon_0} \left(\frac{1}{R} - \frac{1}{r} \right)
\end{align*}
\]

(d) Derive an expression for ρ_0.

\[
\begin{align*}
d\rho &= \rho(r) dV = 4\pi r^2 dr \\
dV &= 4\pi r^2 dr \\
\int d\rho &= \int_0^R \frac{1}{4\pi} \left(1 - \frac{r^2}{R^2} \right) 4\pi r^2 dr \\
\rho &= \frac{1}{4\pi} \int_0^R r^2 \left(1 - \frac{r^2}{R^2} \right) dr \\
\rho &= \frac{1}{4\pi} \int_0^R r^3 \left(1 - \frac{1}{R^2} \right) dr \\
\rho_0 &= \frac{3Q}{\pi R^3} \left(\frac{1}{3} - \frac{1}{4R} \right)
\end{align*}
\]

(e) Determine the magnitude E of the electric field as a function of r for $r \leq R$.

\[
\begin{align*}
\mathbf{E} \cdot dA &= \frac{\varepsilon_0}{\varepsilon_0} \\
\varepsilon_0 &= \frac{4\pi r^2}{1 - \frac{r^2}{R^2}} \\
\mathbf{E} &= \frac{4\pi \rho_0 r \left(\frac{1}{3} - \frac{1}{4R} \right)}{\varepsilon_0} \\
E &= \frac{3\varepsilon_0 r R^3}{\pi \varepsilon_0} \left(\frac{1}{3} - \frac{1}{4R} \right)
\end{align*}
\]

GO ON TO THE NEXT PAGE.
PHYSICS C
Section II, ELECTRICITY AND MAGNETISM
Time—45 minutes
3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part, NOT in the green insert.

E&M. 1.

A spherical cloud of charge of radius R contains a total charge $+Q$ with a nonuniform volume charge density that varies according to the equation

$$\rho(r) = \rho_0 \left(1 - \frac{r}{R}\right) \text{ for } r \leq R \text{ and } \rho = 0 \text{ for } r > R,$$

where r is the distance from the center of the cloud. Express all algebraic answers in terms of Q, R, and fundamental constants.

(a) Determine the following as a function of r for $r > R$.

i. The magnitude E of the electric field

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

ii. The electric potential V

$$V = \frac{Q}{4\pi\varepsilon_0 r}$$

(b) A proton is placed at point P shown above and released. Describe its motion for a long time after its release.

The proton will accelerate away from the cloud along a straight line from the center of the cloud through point P. The acceleration decreases as the proton gets farther away, but the velocity increases.

GO ON TO THE NEXT PAGE.
(c) An electron of charge magnitude e is now placed at point P, which is a distance r from the center of the sphere, and released. Determine the kinetic energy of the electron as a function of r as it strikes the cloud.

$U_{E_i} = qV = \frac{eQ}{4\pi\varepsilon_0 r}$

$U_{Ef} = \frac{eQ}{4\pi\varepsilon_0 R}$

$U_{Ei} = U_{Ef} + K$

$K = U_{Ei} - U_{Ef} = \frac{eQ}{4\pi\varepsilon_0} \left(\frac{1}{r} - \frac{1}{R} \right) = K(r)$

(d) Derive an expression for ρ_0.

$Q = \frac{1}{3} \pi R^3 \rho_0$

$Q = \int_0^R \rho(r) 4\pi r^2 dr$

$Q = \rho_0 \int_0^R (1 - \frac{r}{R}) 4\pi r^2 dr$

$= \rho_0 4\pi \int_0^R (R^2 - \frac{r^3}{R}) dr$

$= \rho_0 4\pi \left[R^2 r - \frac{r^4}{4} \right]_0^R$

$\rho_0 = 3\frac{Q}{\pi R^3}$

(e) Determine the magnitude E of the electric field as a function of r for $r \leq R$.

$E = \frac{Q_{net}}{\varepsilon_0}$

$E = \frac{9Q}{4\pi \varepsilon_0 r^2}$

$E = \frac{3Qr^2}{4R^3} \left(\frac{R}{3} - \frac{r}{4R} \right)$

$E = 3Q \frac{r}{16 \pi R^3} \left(\frac{1}{3} - \frac{r}{4R} \right)$

$q \geq \frac{3Qr^3}{4R^3} \left(\frac{1}{3} - \frac{r}{4R} \right)$

GO ON TO THE NEXT PAGE.