The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT® is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.
6. (10 points)

A diver descends from a salvage ship to the ocean floor at a depth of 35 m below the surface. The density of ocean water is $1.025 \times 10^3 \text{ kg/m}^3$.

(a) Calculate the gauge pressure on the diver on the ocean floor.

\[
P = \rho g h = (1.025 \times 10^3 \text{ kg/m}^3)(9.8)(35) = 351575 \text{ N/m}^2
\]

\[
6.5 \text{ ft} = 3.5 \times 10^5 \text{ Pa}
\]

(b) Calculate the absolute pressure on the diver on the ocean floor.

\[
P = P_a + \rho g h = 1 \times 10^5 \text{ N/m}^2 + 351575 \text{ N/m}^2
\]

\[
= 451575 \text{ Pa}
\]

\[
\therefore P = 4.5 \times 10^5 \text{ Pa}
\]
The diver finds a rectangular aluminum plate having dimensions $1.0 \text{ m} \times 2.0 \text{ m} \times 0.03 \text{ m}$. A hoisting cable is lowered from the ship and the diver connects it to the plate. The density of aluminum is $2.7 \times 10^3 \text{ kg/m}^3$. Ignore the effects of viscosity.

(c) Calculate the tension in the cable if it lifts the plate upward at a slow, constant velocity.

\[
\rho = \frac{m}{V} \quad m = \rho V \\
V = 0.06 \text{ m}^3 \\
\rho = 2.7 \times 10^3 \text{ kg/m}^3 \\
\rho = 162 \text{ kg}
\]

\[
F_T + F_{\text{buoy}} - F_g = ma \\
\text{at a constant velocity} \\
a = 0
\]

\[
\therefore F_T = F_g - F_{\text{buoy}} \\
= 162(9.8) - (1.025 \times 10^3)(9.8)(0.06) \\
= 1587.6 - 602.7 \\
= 984.9 \\
\therefore F_T = 984.9 \text{ N}
\]

(d) Will the tension in the hoisting cable increase, decrease, or remain the same if the plate accelerates upward at 0.05 m/s\(^2\)?

\[\checkmark\] increase \quad ____ decrease \quad ____ remain the same

Explain your reasoning.

\[
F_T + 602.7 - 1587.6 = 162(0.05) \\
F_T = 993 \text{ N}
\]

\[\therefore \] \text{F}_T \text{ increases} \\
\text{To accelerate upwards, force must increase.}

GO ON TO THE NEXT PAGE.
6. (10 points)

A diver descends from a salvage ship to the ocean floor at a depth of 35 m below the surface. The density of ocean water is \(1.025 \times 10^3\) kg/m\(^3\).

(a) Calculate the gauge pressure on the diver on the ocean floor.

\[
P = \rho g h = (1.025 \times 10^3 \text{ kg/m}^3) (9.8 \text{ m/s}^2) (35 \text{ m})
\]

\[
= 4.52 \times 10^5 \text{ Pa}
\]

(b) Calculate the absolute pressure on the diver on the ocean floor.

\[
P = P_0 + \rho g h
\]

\[
1.0 \times 10^5 \text{ Pa} + (1.025 \times 10^3 \text{ kg/m}^3) (9.8 \text{ m/s}^2) (35 \text{ m})
\]

\[
= 4.52 \times 10^5 \text{ Pa}
\]
The diver finds a rectangular aluminum plate having dimensions 1.0 m \times 2.0 \text{ m} \times 0.03 \text{ m}. A hoisting cable is lowered from the ship and the diver connects it to the plate. The density of aluminum is $2.7 \times 10^3 \text{ kg/m}^3$. Ignore the effects of viscosity.

(c) Calculate the tension in the cable if it lifts the plate upward at a slow, constant velocity.

\[
\begin{align*}
F_B &= \rho V g \\
&= (2.7 \times 10^3)(1.0 \times 2.0 \times 0.03)(9.8) \\
&= 1587.6 \text{ N}
\end{align*}
\]

\[
T + F_B = mg
\]

\[
T = mg - F_B
\]

\[
162(9.8) - 1587.6 = 0
\]

(d) Will the tension in the hoisting cable increase, decrease, or remain the same if the plate accelerates upward at 0.05 m/s2?

\[\checkmark \text{ increase} \quad \quad \checkmark \text{ decrease} \quad \quad \checkmark \text{ remain the same}\]

Explain your reasoning.

IF ACCELERATION INCREASES, SO WILL T.

IF THE MASS AND F_B REMAIN THE SAME

$T_{\text{larger}} = ma \text{ larger}$

$a = 0.05 \text{ m/s}^2 \quad \quad \quad > 0 \text{ m/s}^2$

GO ON TO THE NEXT PAGE.