AP® Physics B
2003 Sample Student Responses
Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.
6. (10 points)

A pump, submerged at the bottom of a well that is 35 m deep, is used to pump water uphill to a house that is 50 m above the top of the well, as shown above. The density of water is 1,000 kg/m3. All pressures are gauge pressures. Neglect the effects of friction, turbulence, and viscosity.

(a) Residents of the house use 0.35 m3 of water per day. The day’s pumping is completed in 2 hours during the day.

i. Calculate the minimum work required to pump the water used per day

mass of water pumped per day = 1000×0.35

= 350 kg.

$$mgh = 350 \times 9.8 \times (50 + 35)$$

= 291,550 J.

ii. Calculate the minimum power rating of the pump.

$$\text{minimum power} = \frac{W}{\delta t} = \frac{291,550}{2 \times 60 \times 60}$$

= 40.493 W.
(b) The average pressure the pump actually produces is 9.20 × 10^5 N/m^2. Within the well the water flows at 0.50 m/s and the pipe has a diameter of 3.0 cm. At the house the pipe diameter is 1.25 cm.

i. Calculate the flow velocity when a faucet in the house is open.

\[
\text{area of cross-section of pipe at well} = \pi \left(\frac{3 \times 10^{-2}}{2} \right)^2 = (1.5 \times 10^{-2})^2 \pi. \text{ m}^2
\]

\[
\text{area of cross-section of pipe at house} = \pi \left(\frac{1.25 \times 10^{-2}}{2} \right)^2 = (0.625 \times 10^{-2})^2 \pi. \text{ m}^2
\]

Since \(A_1 v_1 = A_2 v_2 \),

\[
(1.5 \times 10^{-2})^2 \pi (0.5) = (0.625 \times 10^{-2})^2 \pi v
\]

\[
v = 2.88 \text{ m/s}
\]

ii. Explain how you would calculate the minimum pressure at the faucet.

\[
p + \frac{1}{2} \rho g y + \frac{1}{2} \rho v^2 = \text{constant},
\]

Thus

\[
(9.20 \times 10^5) + \frac{1}{2} (1000) (0.5) = p + 1000g(0.5) + \frac{1}{2} (1000)(2.88)^2
\]

\[
p = 83102.8 \text{ N/m}^2
\]
6. (10 points)

A pump, submerged at the bottom of a well that is 35 m deep, is used to pump water uphill to a house that is 50 m above the top of the well, as shown above. The density of water is 1,000 kg/m3. All pressures are gauge pressures. Neglect the effects of friction, turbulence, and viscosity.

(a) Residents of the house use 0.35 m3 of water per day. The day’s pumping is completed in 2 hours during the day.

i. Calculate the minimum work required to pump the water used per day

\[W_g = mgh = 1000 \times (0.35 \times 9.8 \times 50) \]
\[= 175000 \text{ J} \]
\[= 8.6 \times 10^4 \text{ J} \]

ii. Calculate the minimum power rating of the pump.

\[P = \frac{W}{t} \]
\[= \frac{85750}{(2 \times 60 \times 60)} \]
\[= 1.19 \text{ kW} \]

GO ON TO THE NEXT PAGE.
(b) The average pressure the pump actually produces is 9.20×10^5 N/m2. Within the well the water flows at 0.50 m/s and the pipe has a diameter of 3.0 cm. At the house the pipe diameter is 1.25 cm.

i. Calculate the flow velocity when a faucet in the house is open.

\[
A_1 V_1 = A_2 V_2,
\]

\[
V_2 = \frac{A_1 V_1}{A_2}
= \frac{(\frac{0.03}{2})^2 \pi}{(\frac{0.0125}{2})^2 \pi}
= \frac{0.000875}{0.0005625}
= 1.55556

ii. Explain how you would calculate the minimum pressure at the faucet.

\[
p = \frac{F}{A}.
= \frac{9.20 \times 10^5}{\pi \frac{(1.25)}{2}^2}
= \frac{9.20 \times 10^5 \left(\frac{0.0125}{2}\right)^2 \pi}{\pi}
= 7.5 \times 10^7 \text{ Pa}
\]