AP® Physics B
2003 Sample Student Responses
Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
PHYSICS B
SECTION II
Time—90 minutes
7 Questions

Directions: Answer all seven questions, which are weighted according to the points indicated. The suggested time is about 15 minutes for answering each of questions 1-4, and about 10 minutes for answering each of questions 5-7. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part, NOT in the lavender insert.

1. (15 points)
An airplane accelerates uniformly from rest. A physicist passenger holds up a thin string of negligible mass to which she has tied her ring, which has a mass \(m \). She notices that as the plane accelerates down the runway, the string makes an angle \(\theta \) with the vertical as shown above.

(a) In the space below, draw a free-body diagram of the ring, showing and labeling all the forces present.

Tension in the string = \(T \)

\(mg \) = Weight of the ring acting downwards.

GO ON TO THE NEXT PAGE.
The plane reaches a takeoff speed of 65 m/s after accelerating for a total of 30 s.

(b) Determine the minimum length of the runway needed.

\[u = 0, \quad v = 65, \quad t = 30, \quad x = ? \]

\[a = \frac{v - u}{t} = \frac{65 - 0}{30} = \frac{13}{6} \text{ m/s}^2 \]

\[2ax = v^2 - u^2 \]

\[x = \frac{65^2}{2 \left(\frac{13}{6} \right)} = 975 \text{ m} \]

(c) Determine the angle \(\theta \) that the string makes with the vertical during the acceleration of the plane before it leaves the ground.

\[T \cos \theta = mg - 0 \]

\[T \sin \theta = ma - 0 \]

divide (5) by (1)

\[\frac{T \sin \theta}{T \cos \theta} = \frac{ma}{mg} \]

\[\Rightarrow \tan \theta = \frac{a}{g} \]

\[\Rightarrow \theta = \tan^{-1} \left(\frac{13/6}{9.8} \right) = 12.47^\circ \text{ (to 2 decimal places)} \]

(d) What additional information would be needed in order to estimate the mechanical energy of the airplane at the instant of takeoff? Explain your answer.

Total mechanical energy = kinetic energy + potential energy

\[= \frac{1}{2}mv^2 + mgh \]

At the instant of takeoff, \(h = 0 \)

\[\Rightarrow \text{mechanical energy} = \frac{1}{2}mv^2 \]

\[\therefore \text{the mass of the airplane is required to calculate the mechanical energy at the instant of takeoff} \]

GO ON TO THE NEXT PAGE.
PHYSICS B
SECTION II
Time—90 minutes
7 Questions

Directions: Answer all seven questions, which are weighted according to the points indicated. The suggested time is about 15 minutes for answering each of questions 1-4, and about 10 minutes for answering each of questions 5-7. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part, NOT in the lavender insert.

1. (15 points)
An airplane accelerates uniformly from rest. A physicist passenger holds up a thin string of negligible mass to which she has tied her ring, which has a mass m. She notices that as the plane accelerates down the runway, the string makes an angle θ with the vertical as shown above.

(a) In the space below, draw a free-body diagram of the ring, showing and labeling all the forces present.
The plane reaches a takeoff speed of 65 m/s after accelerating for a total of 30 s.

(b) Determine the minimum length of the runway needed.

\[v_f = v_i + at \]
\[S = \frac{v_i + v_f}{2} t \]
\[65 = 0 + a (30) \]
\[\frac{65}{30} = a \]
\[\Rightarrow a = 2.16 \text{ m/s}^2 \]
\[S = \frac{1}{2} \times 2.16 \times (30)^2 \]
\[S = 972 \text{ m} \]

(c) Determine the angle \(\theta \) that the string makes with the vertical during the acceleration of the plane before it leaves the ground.

\[F_{net} = ma \]
\[\Rightarrow F_{restoring} = ma \]
\[mg \sin \theta = ma \]
\[g \sin \theta = a \]
\[\sin \theta = \frac{a}{g} \]
\[\Rightarrow \theta = \sin^{-1} \left(\frac{a}{g} \right) \]
\[\theta = \sin^{-1} \left(\frac{2.16}{9.8} \right) \]
\[\theta = \sin^{-1} \left(0.2204 \right) \]
\[\theta = 12.73^\circ \]

(d) What additional information would be needed in order to estimate the mechanical energy of the airplane at the instant of takeoff? Explain your answer.

Mechanical energy is the sum of the potential and kinetic energies at any particular instant. At the instant of takeoff, the height above the ground can be assumed to be zero. Thus, the entire mechanical energy of the plane is due to its kinetic energy. Since we already know the final velocity, the mass of the airplane would be needed to calculate the mechanical energy.

GO ON TO THE NEXT PAGE.