The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
(c) The absorbance of the unknown solution is 0.275. What is the concentration of the solution?

(d) Beer’s Law is an expression that includes three factors that determine the amount of light that passes through a solution. Identify two of these factors.

(e) The student handles the sample container (e.g., test tube or cuvette) that holds the unknown solution and leaves fingerprints in the path of the light beam. How will this affect the calculated concentration of the unknown? Explain your answer.

(f) Why is this method of determining the concentration of CoCl₂ solution appropriate, whereas using the same method for measuring the concentration of NaCl solution would not be appropriate?

\[
\text{a)} \quad \text{M}_{\text{conc}} \cdot V_{\text{conc}} = \text{M}_{\text{sol}} \cdot V_{\text{sol}}
\]
\[
(0.10)(V_{\text{conc}}) = (0.020)(100L)
\]
\[
V_{\text{conc}} = \frac{0 \cdot 020}{0 \cdot 1} = 0 \cdot 02L
\]

Pipe 0.020L or 20mL of the 0.1M solution into the volumetric flask. Add distilled water to the 100mL mark on the volumetric flask to obtain 100 mL of 0.020M solution.

b) The optimum wavelength is at the peak of the absorbance graph. The wavelength is about 510 nm.

c) From the graph of concentration vs. absorbance, the absorbance of 0.275 matches with a concentration of about 0.050M.

d) One factor is the length of the path that the light has to travel. Another factor is the concentration of the solution: less light passes through more concentrated solutions, less light passes through the solution if the path length is longer.

GO ON TO THE NEXT PAGE.
2) Leaving smudges on the cuvette would cause the calculated concentration to be too high. The fingerprints allow less light than normal to pass through so the reading for transmittance is too low; the reading for absorbance is too high. The concentration would be too high.

3) CoCl₂ solutions have color that varies with the concentration of the solution, so this method is appropriate for determining CoCl₂ concentrations. However, NaCl in solution is colorless, so the concentration of a NaCl solution cannot be determined by this method.
(c) The absorbance of the unknown solution is 0.275. What is the concentration of the solution?

(d) Beer’s Law is an expression that includes three factors that determine the amount of light that passes through a solution. Identify two of these factors.

(e) The student handles the sample container (e.g., test tube or cuvette) that holds the unknown solution and leaves fingerprints in the path of the light beam. How will this affect the calculated concentration of the unknown? Explain your answer.

(f) Why is this method of determining the concentration of CoCl₂ solution appropriate, whereas using the same method for measuring the concentration of NaCl solution would not be appropriate?

1. Put the 10 M solution of CoCl₂ in the 100 mL volumetric flask and add distilled water to the flask with a pipet until the solution reaches the 100 mL mark on the flask.

2. The optimum wavelength for analysis is 500 nm.

3. The concentration of the unknown solution is approximately 0.5 M.

4. The concentration of a solution and

5. The fingerprints will make the spectrometer show that there is less absorbance of light because the fingerprints will be blocking some of the light. If the absorbance is decreased, then the calculated concentration would also be lower than the actual value.

6. This method is only appropriate for colored solutions. A solution of NaCl is colorless.
(c) The absorbance of the unknown solution is 0.275. What is the concentration of the solution?

(d) Beer’s Law is an expression that includes three factors that determine the amount of light that passes through a solution. Identify two of these factors.

(e) The student handles the sample container (e.g., test tube or cuvette) that holds the unknown solution and leaves fingerprints in the path of the light beam. How will this affect the calculated concentration of the unknown? Explain your answer.

(f) Why is this method of determining the concentration of CoCl₂ solution appropriate, whereas using the same method for measuring the concentration of NaCl solution would not be appropriate?

(A) Add 20.0 mL of the 10 M CoCl₂ into the 100 mL flask using the pipet.
 Add 80.0 mL of water to the flask with the pipet.

(B) The optimum wavelength would be 510 nm, considering the graphs are at their highest or lowest points (depending on the graph — high: absorbance vs. wavelength, low: percent transmittance vs. wavelength).

(C) \[M = \frac{\text{mol}}{L} \] The graph shows that the concentration at 0.275 absorbance is 0.05 M.

(D) \[E_\text{a} = -2.178 \times 10^{-18} \text{ J/mole} \] Energy of the light (change in energy, that is).

(E) It will make it larger, because the fingerprints will absorb some extra light, and more absorption means higher molarity (concentration), according to the graph.

(F) NaCl dissolves completely in water, so there would be a very small absorbance.

GO ON TO THE NEXT PAGE.