AP® Chemistry
2003 Sample Student Responses

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at apcentral.collegeboard.com.
\[5 \text{Br}^- (aq) + \text{BrO}_3^- (aq) + 6 \text{H}^+ (aq) \rightarrow 3 \text{Br}_2(l) + 3 \text{H}_2\text{O}(l)\]

3. In a study of the kinetics of the reaction represented above, the following data were obtained at 298 K.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Initial [\text{Br}^-] (mol L(^{-1}))</th>
<th>Initial [\text{BrO}_3^-] (mol L(^{-1}))</th>
<th>Initial [\text{H}^+] (mol L(^{-1}))</th>
<th>Rate of Disappearance of \text{BrO}_3^- (mol L(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00100</td>
<td>0.00500</td>
<td>0.100</td>
<td>2.50 \times 10^{-4}</td>
</tr>
<tr>
<td>2</td>
<td>0.00200</td>
<td>0.00500</td>
<td>0.100</td>
<td>5.00 \times 10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>0.00100</td>
<td>0.00750</td>
<td>0.100</td>
<td>3.75 \times 10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>0.00100</td>
<td>0.01500</td>
<td>0.200</td>
<td>3.00 \times 10^{-3}</td>
</tr>
</tbody>
</table>

(a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.

(i) \text{Br}^-

(ii) \text{BrO}_3^-

(iii) \text{H}^+

(b) Write the rate law for the overall reaction.

(c) Determine the value of the specific rate constant for the reaction at 298 K. Include the correct units.

(d) Calculate the value of the standard cell potential, \(E^\circ\), for the reaction using the information in the table below.

<table>
<thead>
<tr>
<th>Half-reaction</th>
<th>(E^\circ) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Br}_2(l) + 2 \text{e}^- \rightarrow 2 \text{Br}^- (aq))</td>
<td>+1.065</td>
</tr>
<tr>
<td>(\frac{1}{2} \text{BrO}_3^- (aq) + 6 \text{H}^+ (aq) + \frac{5}{2} \text{e}^- \rightarrow \frac{1}{2} \text{Br}_2(l) + 3 \text{H}_2\text{O}(l))</td>
<td>+1.52</td>
</tr>
</tbody>
</table>

(e) Determine the total number of electrons transferred in the overall reaction.

\(\Delta \text{X} \) The order for \(\text{[Br}^-\) is first order because; from experiment one to experiment two, the concentration of \(\text{Br}^-\) is doubled from 0.001 to 0.002, while the other concentrations remain the same. The doubling in the concentration of \(\text{Br}^-\) causes the rate to double from 2.50 \times 10^{-4} to 5.00 \times 10^{-4}. Thus, \(\text{Br}^-\) is first order in the reaction.

(ii) The order for \(\text{BrO}_3^-\) is also first order. We know this because from experiment one to experiment three, the concentration...
ADDITIONAL PAGE FOR ANSWERING QUESTION 3.

of BrO_3^- increases by a multiplication of 1.5 (from 0.0500 to 0.0750) and the concentrations of Br^- and H^+ remain the same. From experiment one to experiment three, the rate also increased by a multiplication of 1.5 (from 2.5 x 10^-4 to 3.75 x 10^-4) thus making [BrO_3^-] first order in the reaction.

(iii) H^+ in the reaction is first order. This one was trickier but from experiment one to experiment four the concentration of H^+ is doubled, but the concentration of BrO_3^- is tripped. Since we already know [BrO_3^-] is first order, the tripling would cause the rate to triple from 2.5 x 10^-4 in the first experiment to 7.5 x 10^-4 in the fourth experiment. This means that H^+ must be second order because quadrupling 7.5 x 10^-4 gives a rate of 300, which is the correct answer. Therefore while the [H^+] doubled from experiment one to four, the rate quadrupled making H^+ second order.

(b) \[\text{rate} = k [\text{Br}^-][\text{BrO}_3^-][\text{H}^+]^2 \]

(c) \[\text{rate} = k [\text{Br}^-][\text{BrO}_3^-][\text{H}^+]^2 \]

\[\frac{2.5 \times 10^{-4} \, \text{mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1} \times (0.0500 \, \text{mol} \cdot \text{L}^{-1})^2}{100 \, \text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}} = k \times 10^{-8} \, \text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1} \]

\[k = 5000 \, \text{L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1} \]

(d) \[E^0 = -1.0985 + 1.57 = 0.455 \, \text{V} \]

\[E^0 = 0.455 \, \text{V} \]

(e) The number of electrons transferred in the overall reaction will be 10e^- because the second reaction must be multiplied by 2 in order to clear the fraction, so the Se^- will become 10e^-.
\[5 \text{Br}^- (aq) + \text{BrO}_3^- (aq) + 6 \text{H}^+ (aq) \rightarrow 3 \text{Br}_2 (l) + 3 \text{H}_2\text{O}(l) \]

3. In a study of the kinetics of the reaction represented above, the following data were obtained at 298 K.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Initial [Br(^-)] (mol L(^{-1}))</th>
<th>Initial [BrO(_3)^-] (mol L(^{-1}))</th>
<th>Initial [H(^+)] (mol L(^{-1}))</th>
<th>Rate of Disappearance of BrO(_3)^- (mol L(^{-1}) s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00100</td>
<td>0.00500</td>
<td>0.100</td>
<td>2.50 \times 10^{-4}</td>
</tr>
<tr>
<td>2</td>
<td>0.00200</td>
<td>0.00500</td>
<td>0.100</td>
<td>5.00 \times 10^{-4}</td>
</tr>
<tr>
<td>3</td>
<td>0.00100</td>
<td>0.00750</td>
<td>0.100</td>
<td>3.75 \times 10^{-4}</td>
</tr>
<tr>
<td>4</td>
<td>0.00100</td>
<td>0.01500</td>
<td>0.200</td>
<td>3.00 \times 10^{-3}</td>
</tr>
</tbody>
</table>

(a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.

(i) Br\(^-\)

(ii) BrO\(_3\)^-

(iii) H\(^+\)

(b) Write the rate law for the overall reaction.

(c) Determine the value of the specific rate constant for the reaction at 298 K. Include the correct units.

(d) Calculate the value of the standard cell potential, \(E^\circ\), for the reaction using the information in the table below.

<table>
<thead>
<tr>
<th>Half-reaction</th>
<th>(E^\circ) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(_2) (l) + 2 e(^-) \rightarrow 2 Br(^-) (aq)</td>
<td>+1.065</td>
</tr>
<tr>
<td>BrO(_3)^- (aq) + 6 H(^+) (aq) + 5 e(^-) \rightarrow \frac{1}{2} \text{Br}_2 (l) + 3 \text{H}_2\text{O}(l)</td>
<td>+1.52</td>
</tr>
</tbody>
</table>

(e) Determine the total number of electrons transferred in the overall reaction.

(i) first, when the concentration of Br\(^-\) doubles and everything else is constant, the rate doubles

(ii) first, when the concentration of BrO\(_3\)^- is multiplied by 1.5 and everything else is constant, the rate multiplies by 1.5

(iii) second, between experiments 2 and 4, the rate becomes 8 times more, it doubles because BrO\(_3\)^- doubles, since that is first order
that leaves a change of 4 times when H⁺ is doubled, so H⁺ is second-order.

b) \(\text{rate} = k \left[\text{Br}^- \right] \left[\text{BrO}_3^- \right] \left[\text{H}^+ \right]^2 \)

c) \(2 \times 10^{-4} = k \left(\frac{0.001 \text{ M}}{2} \right) \left(\frac{0.005 \text{ M}}{2} \right) \left(\frac{1 \text{ M}}{2} \right)^2 \)
\(2 \times 10^{-4} = k \times 5.00 \times 10^{-8} \text{ M}^4 \)
\(2 \times 10^{-4} \text{ M}^4 = k \times 5.00 \times 10^{-8} \text{ M}^4 \)
\(5.00 \times 10^3 \text{ M}^3 \text{ s}^{-1} = k \)

d) \(E^o = E^o \text{ reduced} - E^o \text{ oxidized} \)
\(1.52 - 1.065 = 0.455 \text{ V} \)
\(E^o = 0.455 \text{ V} \)

e) \(2 \times \left(2 \text{Br}^- \rightarrow \text{Br}_2 + 2e^- \right) \)
\(\left(\text{BrO}_3^- + 6 \text{H}^+ + 6e^- \rightarrow \frac{3}{2} \text{Br}_2 + 3 \text{H}_2\text{O} \right) \)
5 electrons are transferred in each half-reaction for a total of 10 electrons transferred.
5 \text{Br}^{-}(aq) + \text{BrO}_3^{-}(aq) + 6 \text{H}^{+}(aq) \rightarrow 3 \text{Br}_2(l) + 3 \text{H}_2\text{O}(l)

3. In a study of the kinetics of the reaction represented above, the following data were obtained at 298 K.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Initial [Br−] (mol L−1)</th>
<th>Initial [BrO\textsubscript{3}−] (mol L−1)</th>
<th>Initial [H+] (mol L−1)</th>
<th>Rate of Disappearance of BrO\textsubscript{3}− (mol L−1 s−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00100</td>
<td>0.00500</td>
<td>0.100</td>
<td>2.50 × 10−4</td>
</tr>
<tr>
<td>2</td>
<td>0.00200</td>
<td>0.00500</td>
<td>0.100</td>
<td>5.00 × 10−4</td>
</tr>
<tr>
<td>3</td>
<td>0.00100</td>
<td>0.00750</td>
<td>0.100</td>
<td>3.75 × 10−4</td>
</tr>
<tr>
<td>4</td>
<td>0.00100</td>
<td>0.01500</td>
<td>0.200</td>
<td>3.00 × 10−3</td>
</tr>
</tbody>
</table>

(a) From the data given above, determine the order of the reaction for each reactant listed below. Show your reasoning.

(i) Br−

(ii) BrO\textsubscript{3}−

(iii) H+

(b) Write the rate law for the overall reaction.

(c) Determine the value of the specific rate constant for the reaction at 298 K. Include the correct units.

(d) Calculate the value of the standard cell potential, \(E^\circ \), for the reaction using the information in the table below.

<table>
<thead>
<tr>
<th>Half-reaction</th>
<th>(E^\circ) (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Br}_2(l) + 2 e− \rightarrow 2 \text{Br}^{-}(aq)</td>
<td>+1.065</td>
</tr>
<tr>
<td>\text{BrO}_3^{-}(aq) + 6 \text{H}^{+}(aq) + 5 e− \rightarrow \frac{1}{2} \text{Br}_2(l) + 3 \text{H}_2\text{O}(l)</td>
<td>+1.52</td>
</tr>
</tbody>
</table>

(e) Determine the total number of electrons transferred in the overall reaction.

\[
\begin{align*}
\alpha & = k [\text{Br}^{-}]^x [\text{BrO}_3^{-}]^y [\text{H}^{+}]^z \\
(i) & = 2.5 \times 10^{-4} = \frac{1}{2} (0.01)^x (0.005)^y (0.1)^z \\
& \quad 1 = \frac{1}{2} \quad x = 1 \quad \text{first order for Br}^{-} \\
(ii) & = 2.5 \times 10^{-4} = \frac{1}{3} (0.005)^y (0.005)^z (0.1)^z \\
& \quad 2 = \frac{1}{3} \quad y = 1 \quad \text{first order for BrO}_3^{-} \\
(iii) & = 3.0 \times 10^{-3} = \frac{3}{2} (0.005)^z (0.005)^z (0.1)^z \\
& \quad 3 = \frac{3}{2} \quad z = 2 \quad \text{second order for H}^{+}
\end{align*}
\]
b) \[P = k \left[R_2 \right] \left[BrO_3^- \right] \left[H^+ \right] \]

c) \[2.30 \times 10^{-4} = k \left(0.001 \times 0.005 \times 1 \right)^2 \]

\[k = \frac{2.30 \times 10^{-4}}{0.001 \times 0.005 \times 1} \]

\[k = \frac{2.30 \times 10^{-4}}{5 \times 10^{-8}} \]

\[k = 5.00 \times 10^3 \text{ mol}^{-1} \text{ dm}^3 \text{ mol} \]

d) \[2Br^- \rightarrow 2e^- + Br_2 \]

\[\Delta G^o = -1.065 \text{ V} \]

\[\text{Br}_2O_2^- + 6e^- + 6H^+ \rightarrow 2\text{Br}_2 + 3H_2O \]

\[\Delta G^o = +1.52 \text{ V} \]

\[\text{Br}_2O_2^- + 2\text{Br}^- + 6H^+ + 6e^- \rightarrow 2\text{Br}_2 + 3H_2O \]

\[\Delta G^o = -(9.55 \text{ V}) \]

e) \[6 \text{ e}^- \]