AP® Chemistry
2003 Sample Student Responses
Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
8. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta \(^0\) emission.

(a) Write a balanced nuclear equation for the decay of I-131.

(b) What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

(c) Determine the half-life, \(t_{1/2}\), of I-131 using the graph above.

(d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

(i) Label the vertical axis of the graph above.

(ii) What are the units of the rate constant, \(k\), for the decay reaction?

(iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

(e) Compare the value of the half-life of I-131 at 25°C to its value at 50°C.
(b) When a beta particle is emitted a neutron emits an electron and becomes a proton. The neutron is the source.

(c) \[ t_{1/2} = \text{time for half the given sample to decay} \]
\[ t_{1/2} = 3 \text{ days} \]

(d)(ii) \[ \ln S = -kt + \ln S_0 \]
\[ \text{Half-life} = \frac{\ln 2}{k} \]

(iii) The slope of this graph is \(-k\). Half-life can be calculated by dividing \(\ln 2\) by the negative of the slope.
\[ \text{Half-life} = \frac{\ln 2}{k} \]

(e) It is the same. Radioactive decay is not a chemical process and does not depend on temperature. The rate of decay depends on the nature of the substance (thermodynamic considerations) and the amount of substance left.

-27-
8. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta (\(^\beta\)) emission.

(a) Write a balanced nuclear equation for the decay of I-131.

(b) What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

(c) Determine the half-life, \(t_{1/2}\), of I-131 using the graph above.

(d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

(i) Label the vertical axis of the graph above.

(ii) What are the units of the rate constant, \(k\), for the decay reaction?

(iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

(e) Compare the value of the half-life of I-131 at 25°C to its value at 50°C.
ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

(a) $^{131}\text{I} \rightarrow ^0\text{e} + ^{131}\text{Xe}$

(b) A neutron in the nucleus of I

(c) $^{1/2}$ life = time required for $^{1/2}$ material to decay.
   Taking time difference from $16,000 \rightarrow 8,000$
   we find that the half-life is 8 days.

(d) i) $1^{st}$ order $\Rightarrow \ln[^{1/2}] \propto t$
   $\Rightarrow$ axis label is $\ln$ [decreasion rate]

   ii) $\ln[A] = -kt + \ln[A_0]$
   $\Rightarrow k = -$ slope = units
      days

   $\Rightarrow$ units for $k$ are days$^{-1}$

(iii) $^{1/2}$ life $\Rightarrow [A] = ^{1/2}[A_0]$
   $\ln[^{1/2}] = -kt_{^{1/2}} + \ln[A_0]$
   $\ln[^{1/2}] = -kt_{^{1/2}}$
   $-\ln 2 = -kt_{^{1/2}} \Rightarrow t_{^{1/2}} = \frac{\ln 2}{k}$

The slope of the graph $= -k$

$\Rightarrow k = -$ slope

$\Rightarrow t_{^{1/2}}$ can be calculated by dividing
   $\ln 2$ with -$slope$

i.e. $t_{^{1/2}} = \frac{\ln 2}{-slope}$

(e) At a higher temperature (i.e. 50°C) the components

GO ON TO THE NEXT PAGE.
of the atom would be at a more excited state. Consequently, since systems tend to lower energy, the rate of emission of these particles would increase, i.e., \( k \) increases.

\[
\frac{\ln\frac{1}{2}}{k} = \ln 2
\]

The half-life of a radioactive particle & the rate constant \( k \) are inversely proportional. This means that as \( k \) increases, \( t_{1/2} \) would decrease.

\( \circ \) \( t_{1/2} \) at 50°C \( \leq \) \( t_{1/2} \) at 25°C
8. The decay of the radioisotope I-131 was studied in a laboratory. I-131 is known to decay by beta ($\beta^-$) emission.

(a) Write a balanced nuclear equation for the decay of I-131.

(b) What is the source of the beta particle emitted from the nucleus?

The radioactivity of a sample of I-131 was measured. The data collected are plotted on the graph below.

(c) Determine the half-life, $t_{1/2}$, of I-131 using the graph above.

(d) The data can be used to show that the decay of I-131 is a first-order reaction, as indicated on the graph below.

(i) Label the vertical axis of the graph above.

(ii) What are the units of the rate constant, $k$, for the decay reaction?

(iii) Explain how the half-life of I-131 can be calculated using the slope of the line plotted on the graph.

(e) Compare the value of the half-life of I-131 at 25°C to its value at 50°C.
ADDITIONAL PAGE FOR ANSWERING QUESTION 8.

(a) $^{131}_{53}$ I $\rightarrow \gamma \beta^+ \ \text{Ie} + ^{131}_{54}$ Xe

(b) It is the radioactivity that results in the detachment of an electron.

(c) The disintegration rate halves every 8 days.

\[ \therefore T_{1/2} = 8 \text{ days} \]

(d) (i) \text{[on the diagram]}

(ii) \[ T_{1/2} = \frac{0.693}{K} \]

\[ K = \frac{0.693}{8 \text{ days}} = 0.0853 \text{ days}^{-1} \]

the unit is \text{days}^{-1} or \text{(time)}^{-1}

(e) The slope of the graph yields the half-life value.

(f) The half-life value decreases as the rate is faster as the temperature increases. There are more collisions hence more vibrant reactions.