The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. Oxalic acid, $\text{H}_2\text{C}_2\text{O}_4$, is a primary standard used to determine the concentration of potassium permanganate, KMnO_4, in solution. The equation for the reaction is as follows.

$$2 \text{KMnO}_4(aq) + 5 \text{H}_2\text{C}_2\text{O}_4(aq) + 3 \text{H}_2\text{SO}_4(aq) \rightarrow 2 \text{MnSO}_4(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) + \text{K}_2\text{SO}_4(aq)$$

A student dissolves a sample of oxalic acid in a flask with 30 mL of water and 2.00 mL of 3.00 M H_2SO_4. The KMnO_4 solution of unknown concentration is in a 25.0 mL buret. In the titration, the KMnO_4 solution is added to the solution containing oxalic acid.

(a) What chemical species is being oxidized in the reaction?

(b) What substance indicates the observable endpoint of the titration? Describe the observation that shows the endpoint has been reached.

(c) What data must be collected in the titration in order to determine the molar concentration of the unknown KMnO_4 solution?

(d) Without doing any calculations, explain how to determine the molarity of the unknown KMnO_4 solution.

(e) How would the calculated concentration of the KMnO_4 solution be affected if 40 mL of water was added to the oxalic acid initially instead of 30 mL? Explain your reasoning.

(a) $\text{KMnO}_4 \rightarrow \text{H}_2\text{C}_2\text{O}_4$, oxalic acid.

Since carbon oxidation number increased indicating that it lost an electron hence oxidized.

(b) KMnO_4. The solution would change color from purple to colorless to purple.

(c) Volume of KMnO_4 used for titration.

To the equivalence point and the mass of oxalic acid used. Volume of KMnO_4 sample of oxalic acid used, volume of oxalic acid titrated.

GO ON TO THE NEXT PAGE.
a) I would calculate the concentration of number of moles of oxalic acid by dividing its mass by 90. Then I would multiply the number of moles of oxalic acid by $\frac{5}{2}$ to get the number of moles of KMnO$_4$ required to react completely with the oxalic acid. Divide the number of moles of oxalic acid by the volume obtained in your titration.

e) No effect. Since the 30mL water was used prior to dissolve the solution of oxalic acid and it was all titrated, the number of moles of oxalic acid would not be affected by the amount of water added. And the error in experimental error would most probably occur in the process of titration or weighing the sample of oxalic acid.
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. Oxalic acid, \(H_2C_2O_4 \), is a primary standard used to determine the concentration of potassium permanganate, \(KMnO_4 \), in solution. The equation for the reaction is as follows.

\[
2 \text{KMnO}_4(aq) + 5 \text{H}_2\text{C}_2\text{O}_4(aq) + 3 \text{H}_2\text{SO}_4(aq) \rightarrow 2 \text{MnSO}_4(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) + \text{K}_2\text{SO}_4(aq)
\]

A student dissolves a sample of oxalic acid in a flask with 30 mL of water and 2.00 mL of 3.00 \(M \) \(H_2SO_4 \). The \(KMnO_4 \) solution of unknown concentration is in a 25.0 mL buret. In the titration, the \(KMnO_4 \) solution is added to the solution containing oxalic acid.

(a) What chemical species is beingoxidized in the reaction?

(b) What substance indicates the observable endpoint of the titration? Describe the observation that shows the endpoint has been reached.

(c) What data must be collected in the titration in order to determine the molar concentration of the unknown \(KMnO_4 \) solution?

(d) Without doing any calculations, explain how to determine the molarity of the unknown \(KMnO_4 \) solution.

(e) How would the calculated concentration of the \(KMnO_4 \) solution be affected if 40 mL of water was added to the oxalic acid initially instead of 30 mL? Explain your reasoning.

\[a) \text{H}_2\text{C}_2\text{O}_4 \text{ is being oxidized.} \]

\[b) \text{The presence of purple/pink in solution because of the KMnO}_4 \text{.} \]

\[c) \text{The volume of KMnO}_4 \text{ used, the mass of the sample of oxalic acid, the volume at the equivalence point, the initial buret reading.} \]

\[d) \text{Take the mass of oxalic acid and change it into moles then find how many moles of KMnO}_4 \text{ by using the ratio. Then taking the volume of KMnO}_4 \text{ to reach equivalence point, use } \]

\[M = \text{moles} \]

\[\text{to find the molar concentration.} \]

\[e) \text{It would make the solution more diluted, therefore requiring less volume of KMnO}_4 \text{ to neutralize, hence a higher or larger concentration.} \]

GO ON TO THE NEXT PAGE.
Your responses to the rest of the questions in this part of the examination will be graded on the basis of the accuracy and relevance of the information cited. Explanations should be clear and well organized. Examples and equations may be included in your responses where appropriate. Specific answers are preferable to broad, diffuse responses.

Answer BOTH Question 5 below AND Question 6 printed on page 20. Both of these questions will be graded. The Section II score weighting for these questions is 30 percent (15 percent each).

5. Oxalic acid, $\text{H}_2\text{C}_2\text{O}_4$, is a primary standard used to determine the concentration of potassium permanganate, KMnO_4, in solution. The equation for the reaction is as follows.

$$2 \text{KMnO}_4(aq) + 5 \text{H}_2\text{C}_2\text{O}_4(aq) + 3 \text{H}_2\text{SO}_4(aq) \rightarrow 2 \text{MnSO}_4(aq) + 10 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) + \text{K}_2\text{SO}_4(aq)$$

A student dissolves a sample of oxalic acid in a flask with 30 mL of water and 2.00 mL of 3.00 M H_2SO_4. The KMnO_4 solution of unknown concentration is in a 25.0 mL buret. In the titration, the KMnO_4 solution is added to the solution containing oxalic acid.

(a) What chemical species is being oxidized in the reaction?

(b) What substance indicates the observable endpoint of the titration? Describe the observation that shows the endpoint has been reached.

(c) What data must be collected in the titration in order to determine the molar concentration of the unknown KMnO_4 solution?

(d) Without doing any calculations, explain how to determine the molarity of the unknown KMnO_4 solution.

(e) How would the calculated concentration of the KMnO_4 solution be affected if 40 mL of water was added to the oxalic acid initially instead of 30 mL? Explain your reasoning.

To find the oxidation number of C in $\text{H}_2\text{C}_2\text{O}_4$; assume it is x.

$$2(1) + 2x + 4(-2) = 0$$

$$2 + 2x - 8 = 0 \Rightarrow 2x = 6 \Rightarrow x = 3$$

Thus, the oxidation number of C is 3^+.

In CO_2, the oxidation number is $x - 8 = 0 \Rightarrow x = 8$.

Since the oxidation number of C increases, $\text{H}_2\text{C}_2\text{O}_4$ is being oxidized. The oxidation number of S in H_2SO_4 remains the same.

GO ON TO THE NEXT PAGE.
b) KMnO₄ indicates the end point of the titration when it turns from colorless to a light pink/purple color.

c) In order to determine the molar concentration of KMnO₄ solution, the volume of KMnO₄ solution required to reach the end point of the titration.

d) 1. Determine the number of moles of H₂C₂O₄ that have been added.
 \[n_{H_2C_2O_4} = \frac{[H_2C_2O_4]}{\text{Volume of } H_2C_2O_4} \]

2. At the equivalence point:
 \[2n_{KMnO_4} = 5n_{H_2C_2O_4} \]
 By the ratio method, the number of moles of KMnO₄ at the equivalence point can be calculated.

3. Molarity = \frac{n_{KMnO_4 \text{ at equiv}}}{\text{Vol.}}

e) The concentration of KMnO₄ should not be affected if the ratios of the moles are taken properly.