3. In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed that the sample contained 6.000 g of carbon and 1.344 g of hydrogen.

(a) Determine the empirical formula of the hydrocarbon.

(b) The density of the hydrocarbon at 25°C and 1.09 atm is 1.96 g L⁻¹.

 (i) Calculate the molar mass of the hydrocarbon.

 (ii) Determine the molecular formula of the hydrocarbon.

In another experiment, liquid heptane, \(C_7H_{16}(l) \), is completely combusted to produce \(\text{CO}_2(g) \) and \(\text{H}_2\text{O}(l) \), as represented by the following equation.

\[
C_7H_{16}(l) + 11 \text{O}_2(g) \rightarrow 7 \text{CO}_2(g) + 8 \text{H}_2\text{O}(l) \quad \Delta H_{\text{comb}}^\circ = -4.85 \times 10^3 \text{kJ}
\]

The heat of combustion, \(\Delta H_{\text{comb}}^\circ \), for one mole of \(C_7H_{16}(l) \) is \(-4.85 \times 10^3 \text{kJ}\).

(c) Using the information in the table below, calculate the value of \(\Delta H_f^\circ \) for \(C_7H_{16}(l) \) in kJ mol⁻¹.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta H_f^\circ) (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO}_2(g))</td>
<td>-393.5</td>
</tr>
<tr>
<td>(\text{H}_2\text{O}(l))</td>
<td>-285.8</td>
</tr>
</tbody>
</table>

(d) A 0.0108 mol sample of \(C_7H_{16}(l) \) is combusted in a bomb calorimeter.

 (i) Calculate the amount of heat released to the calorimeter.

 (ii) Given that the total heat capacity of the calorimeter is 9.273 kJ °C⁻¹, calculate the temperature change of the calorimeter.

\[
\alpha = M_c = 6.000 \text{ g} \left(\frac{1 \text{ mol}}{12.011 \text{ g}} \right) = 0.4995 \text{ mol}
\]

\[
M_H = 1.344 \text{ g} \left(\frac{1 \text{ mol}}{1.0079 \text{ g}} \right) = 1.333 \text{ mol H}
\]

\[
C_{0.4995} \cdot H_{1.333} \Rightarrow C_{\frac{4}{7}} H_{\frac{8}{7}}
\]

\[
\Rightarrow C_7H_8 - \text{ empirical formula}
\]

\[
\text{b) } T = 253 + 25 = 278 \text{ K}
\]

\[
\text{d) } 1.96 \text{ g/L}
\]

\[
P = 1.09 \text{ atm}
\]

\[
\text{i) Molar mass } = \frac{dRT}{P} = 1.96 \frac{\text{g}}{\text{L}} \times \frac{0.08206 \text{ atm}}{1.09 \text{ atm}} \left(298 \text{ K} \right)
\]

\[
\text{Molar mass } = 43.97 \text{ g/mol}
\]

\[
\text{GO ON TO THE NEXT PAGE.}
\]
ii) Molecular formula:

\[\text{H}_4 \text{O}_8 = \text{C}_3 \text{H}_8 + \text{H}_2 \text{O}_4 \]

\[\text{H}_4 \text{O}_8 = \text{C}_3 \text{H}_8 + 4\text{H}_2 \text{O} \]

\[k = \frac{4\text{H}_2 \text{O}}{\text{H}_4 \text{O}_8} = 0.998 \text{ or } 1 \]

Molecular formula is \(\text{C}_3 \text{H}_8 \) since \(k \approx 1 \).

(c) \(-1.85 \times 10^3 \text{kJ} = \left(8\text{mol} \times \left(-225.8 \text{kJ/mol}\right) \right) + 2\text{mol} \times \left(-393.5 \text{kJ/mol}\right) - (0 + \Delta H^\circ_{\text{C}_3 \text{H}_8}) \)

\[\Delta H^\circ_{\text{C}_3 \text{H}_8} = -2286.4 \text{kJ} - 787 \times 1.5 \text{kJ} + 4.85 \times 10^3 \text{kJ} \]

\[\Delta H^\circ_{\text{C}_3 \text{H}_8} = -190.9 \text{kJ/mol} \]

\[\Delta H^\circ_{\text{C}_3 \text{H}_8} = -191 \text{kJ/mol} \]

d) Heat released = 0.98 mol \(\Delta H^\circ_{\text{C}_3 \text{H}_8} \left(-1.85 \times 10^3 \text{kJ} \right) = -57.38 \text{kJ} \)

Thus, 57.4 kJ released as heat to the surroundings.

ii) \(\Delta T = \frac{52.4 \text{kJ}}{32738 \text{kg}} = 5.64^\circ\text{C} \)

\[\Delta T = 5.64^\circ\text{C} \]

STOP

If you finish before time is called, you may check your work on this part only.
Do not turn to the other part of the test until you are told to do so.
3. In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed that the sample contained 6.000 g of carbon and 1.344 g of hydrogen.

(a) Determine the empirical formula of the hydrocarbon.

(b) The density of the hydrocarbon at 25°C and 1.09 atm is 1.96 g L⁻¹.

(i) Calculate the molar mass of the hydrocarbon.

(ii) Determine the molecular formula of the hydrocarbon.

In another experiment, liquid heptane, C₇H₁₆(l), is completely combusted to produce CO₂(g) and H₂O(l), as represented by the following equation.

\[C₇H₁₆(l) + 11 O₂(g) \rightarrow 7 CO₂(g) + 8 H₂O(l) \]

The heat of combustion, \(\Delta H_{\text{comb}} \), for one mole of C₇H₁₆(l) is \(-4.85 \times 10^3 \) kJ.

(c) Using the information in the table below, calculate the value of \(\Delta H^\circ_f \) for C₇H₁₆(l) in kJ mol⁻¹.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta H^\circ_f) (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂(g)</td>
<td>-393.5</td>
</tr>
<tr>
<td>H₂O(l)</td>
<td>-285.8</td>
</tr>
</tbody>
</table>

(d) A 0.0108 mol sample of C₇H₁₆(l) is combusted in a bomb calorimeter.

(i) Calculate the amount of heat released to the calorimeter.

(ii) Given that the total heat capacity of the calorimeter is 9.273 kJ °C⁻¹, calculate the temperature change of the calorimeter.

\[
\begin{align*}
\text{a) } C₇H₁₆ & \rightarrow 6gC \times \frac{1\text{ mol}}{12g} = 0.5\text{ mol} C \\
& \rightarrow 1.23444 \times \frac{1\text{ mol}}{8.064} = 1.4424\text{ mol H}_.
\end{align*}
\]

\[
\begin{align*}
\text{Lp: emp. formula } &= C₂H₈. \\
\text{(i) density } &= \frac{1.962 g}{11} \text{ emp. weight } = 3(12) + 8(1) = 44 g. \\
\text{Molar mass } &= \frac{44 g}{11} = 4.00 g/mol \\
\text{(ii) emp. weight } &= 44 g. \\
\text{Emp. ratio } &= \frac{\text{empirical weight}}{\text{molecular weight}} = \frac{44}{43.904} \approx 1:1.
\end{align*}
\]

GO ON TO THE NEXT PAGE.
c) \(\Delta H^\circ = \Delta H (\text{product}) - \Delta H (\text{reactant}) \)

\[
-4.85 \times 10^3 = \pm (-393.5) + 8 (-265.8) - 2 \checkmark
\]

\[-4.85 \times 10^3 = -5040.9 - x.\]

\[-x = -4.85 \times 10^3 + 5040.9 = 190.9\]

\[x = -190.9 \text{ K} = \Delta H^\circ (\text{Cu}_1\text{O})\]

\[\Delta H^\circ (\text{product}) = -4.85 \times 10^3 \text{ kJ/mol} \]

\[
\Delta H = 0.0108n \times -4.85 \times 10^3 \text{ kJ/mol} = -52.38 \text{ kJ}
\]

\[\Delta H = \Delta U = -52.38 \text{ kJ} \]

\[(ii)\] \(CP = \frac{\Delta H}{\Delta T} = \frac{-52.38 \text{ kJ}}{10} \checkmark \]

\[\Delta T = \frac{\Delta U}{CP} = \frac{-52.38 \text{ kJ}}{10 \text{ kJ/mol} \cdot K} = -5.23 \text{ mol} \cdot \text{K} = \Delta T.\]

STOP

If you finish before time is called, you may check your work on this part only.
Do not turn to the other part of the test until you are told to do so.
3. In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed that the sample contained 6.000 g of carbon and 1.344 g of hydrogen.

(a) Determine the empirical formula of the hydrocarbon.

(b) The density of the hydrocarbon at 25°C and 1.09 atm is 1.96 g L⁻¹.

(i) Calculate the molar mass of the hydrocarbon.

(ii) Determine the molecular formula of the hydrocarbon.

In another experiment, liquid heptane, C₇H₁₆(l), is completely combusted to produce CO₂(g) and H₂O(l), as represented by the following equation.

\[C₇H₁₆(l) + 11 O₂(g) \rightarrow 7 CO₂(g) + 8 H₂O(l) \]

The heat of combustion, \(\Delta H_{comb}^\circ \), for one mole of C₇H₁₆(l) is \(-4.85 \times 10³ \) kJ.

(c) Using the information in the table below, calculate the value of \(\Delta H_f^\circ \) for C₇H₁₆(l) in kJ mol⁻¹.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\Delta H_f^\circ) (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂(g)</td>
<td>-393.5</td>
</tr>
<tr>
<td>H₂O(l)</td>
<td>-285.8</td>
</tr>
</tbody>
</table>

(d) A 0.0108 mol sample of C₇H₁₆(l) is combusted in a bomb calorimeter.

(i) Calculate the amount of heat released to the calorimeter.

(ii) Given that the total heat capacity of the calorimeter is 9.273 kJ °C⁻¹, calculate the temperature change of the calorimeter.

\[\rho V = nRT \]

\[\rho \frac{\Delta T}{\Delta V} = \frac{nR}{V} \]

\[M_r = \frac{RT}{\rho} \]

\[= (0.0821) (25+273) \left(\frac{146}{11.09} \right) = 43.99 ^\circ C \]

GO ON TO THE NEXT PAGE.
\[C_{5}H_{13} = \text{CH}_{3}CH(\text{CH}_{3})CH_{2}CH_{3} \]

\[\frac{2}{3} + \frac{4}{4} = \frac{5}{3} \]

\[44 \div 93 = 0.48 \approx \frac{3}{5} \]

\[C_{5}H_{13} \]

\[C_{3}H_{8} \]

\[\Delta H^\circ \text{comp} = [8(-285.8) + 9(-393.5)] J - \Delta H^\circ C_{7}H_{16} \]

\[\Delta H^\circ C_{7}H_{16} = -5040.9 + 4085 \times 10^3 \]

\[= -1901.9 \text{ MJ/mol} \]

\[\Delta \text{H} = \text{heat released} \times \frac{1}{\text{mol}} \]

\[m(C_{7}H_{16}) \cdot \Delta T = \frac{q}{m} \]

\[= (0.0108 \text{ mol}) \cdot (108) \cdot \frac{521.4}{0.0108} \text{ J} \]

\[= 0.566 \text{ KJ} \text{ released} = 0.566 \text{ KJ} \]

\[(108)(9.293 \text{ KJ}) \]

\[= 0.566 \text{ KJ} \]

\[= 0.566 \text{ KJ} \]

\[\text{STOP} \]

If you finish before time is called, you may check your work on this part only.
Do not turn to the other part of the test until you are told to do so.