AP® Calculus BC
2003 Sample Student Responses
Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
Work for problem 3(a)

\[\text{Since radius} = \frac{1}{2} (\text{diameter}) \]

\[\Rightarrow \text{Average radius} = \frac{1}{2} \left(\frac{360}{(360 - 0)} \int_{0}^{360} B(x) \, dx \right) = \frac{360}{720} \int_{0}^{360} B(x) \, dx \]

Work for problem 3(b)

\[\int_{0}^{360} B(x) \, dx = \lim_{n \to \infty} \sum_{k=1}^{3} B(c_k) \Delta x \]

\[c_1 = 60 \text{mm} \Rightarrow B(c_1) = 30 \text{mm} \]
\[c_2 = 180 \text{mm} \Rightarrow B(c_2) = 30 \text{mm} \]
\[c_3 = 300 \text{mm} \Rightarrow B(c_3) = 24 \text{mm} \]
\[\Delta x = \frac{3 \times 360}{3} = \frac{360 \text{mm}}{3} = 120 \text{mm} \]

\[\Rightarrow \sum_{k=1}^{3} B(c_k) \Delta x = 120 \text{mm} \left(B(c_1) + B(c_2) + B(c_3) \right) \]

\[= 120 \text{mm} \left(30 \text{mm} + 30 \text{mm} + 24 \text{mm} \right) = 10800 \text{mm}^2 \]

\[\Rightarrow \text{Average radius} = \frac{1}{720} \int_{0}^{360} B(x) \, dx \approx \frac{1}{720} \left(10800 \text{mm}^2 \right) = 14 \text{mm} \]

Continue problem 3 on page 9.
Work for problem 3(c)

It is the volume of blood in the blood vessel starting from a distance of 125mm from one end to a distance of 275mm from the same end. The units will be $(\text{mm})^3$.

Work for problem 3(d)

\[
B''(x) = 0 \implies \frac{B'(b) - B'(a)}{b - a} = 0
\]

\[
= \frac{B'(b) = B'(a)}{b - a}
\]

\[
= \frac{B(b) - B(a)}{d - e} = \frac{B(c) - B(f)}{c - f}
\]

Since for all x, x is the same

\[
= \frac{B(d) - B(e)}{d - e} = \frac{B(c) - B(f)}{c - f}
\]

From the table there are values of d, e, c, f such that

\[
B(300) - B(300) = B(300) - B(240) \implies 26 - 24 = 26 - 24 \implies 0 = 0
\]

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.
Work for problem 3(a)

\[B(x)_{\text{avg}} = \frac{1}{360-0} \int_{0}^{360} \frac{B(x)}{2} \, dx \]

\[= \frac{1}{360} \int_{0}^{360} \frac{B(x)}{2} \, dx \]

Work for problem 3(b)

\[\frac{360}{3} = 120 \]

\[B(x)_{\text{avg}} = \frac{1}{360} \left[\frac{120f(60)}{2} + \frac{120f(150)}{2} + \frac{120f(300)}{2} \right] \]

\[= \frac{120}{360} \left[15 + 15 + 12 \right] \]

\[= \frac{27}{36} \times 3 \]

\[= 14 \text{ mm} \]

Continue problem 3 on page 9.
Work for problem 3(c)

\[\frac{B(x)}{2} = \text{radius of blood vessel} \]

\[\pi \int_{125}^{275} \left(\frac{B^2}{2} \right)^2 \, dx \]

Volume of the blood vessel from

\[x = 125 \text{ mm} \text{ to } x = 275 \text{ mm} \text{ in } (\text{mm})^3 \]

Work for problem 3(d)

At \(x \) where \(B''(x) = 0 \)

There is an inflection on the graph

The sign of \(B'(x) \) changes

\(B'(x) \), the change of diameter

From the table we know that when the diameter increases \(B'(x) > 0 \) when diameter decreases \(B'(x) < 0 \)

\(B'(x) \) changes signs

\[B''(x) = 0 \]

END OF PART A OF SECTION II

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART A ONLY. DO NOT GO ON TO PART B UNTIL YOU ARE TOLD TO DO SO.