AP® Calculus AB
2003 Sample Student Responses
Form B

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program®. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.
CALCULUS AB
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

![Graph](image)

points: \(f(x) = (3, 9) \)
\(l = (3, 9) \)

Work for problem 1(a)

Value for \(f(x) \) at \(x = 3 \): \(4x^2 - x^3 \)

\(f(3) = 27 \)

Value for \(l \) at \(x = 3 \): \(18 - 3x \)

\(l(3) = 9 \)

\[\text{slope of } f'(3) \leq \text{slope of } l = -3 \]

\[f'(3) = 8x - 3x^2 \]

\(24 - 27 \)

\(= -3 \)

Continue problem 1 on page 5.
Work for problem 1(b)

\[f(x) = 0 = 4x^2 - x^3 \]

\[4 - x = 0 \]

\[x = 4 \]

\[\left[\int_{3}^{6} (18 - 3x) \, dx \right] - \left[\int_{3}^{4} 4x^2 - x^3 \, dx \right] \]

\[\left\{ \left[18x - \frac{3}{2} x^2 \right]_{3}^{6} \right\} - \left\{ \left[\frac{4}{3} x^3 - \frac{1}{4} x^4 \right]_{3}^{4} \right\} \]

\[= \left[(54 - 40.5 \cdot 3) - (21.3 - 15.75 \cdot 3) \right] \]

\[= \left[(93.5 - 15.83) \right] = 79.67 \text{ units}^2 \]

Work for problem 1(c)

\[\pi \int_{0}^{4} (4x^2 - x^3)^2 \]

\[= \pi \int_{0}^{4} 16x^4 - 8x^5 + x^6 \]

\[= \pi \left[\frac{16}{5} x^5 - \frac{8}{6} x^6 + \frac{1}{7} x^7 \right]_{0}^{4} \]

\[= \pi \left(156.038 \right) \]

\[= 490.208 \text{ units}^3 \]

GO ON TO THE NEXT PAGE.
CALCULUS AB
SECTION II, Part A
Time—45 minutes
Number of problems—3

A graphing calculator is required for some problems or parts of problems.

Work for problem 1(a)

Both equations have to have same value at 3.

\[f(x) = 4x^2 - x^3 \quad y = 3 \]
\[f(3) = 4(3)^2 - 3^3 \]
\[= 36 - 27 \]
\[= 9 \quad \text{when} \quad x = 3, \quad y = 9 \]

\[y = 18 - 3x \quad x = 3 \]
\[y = 18 - 3(3) \]
\[y = 18 - 9 \]
\[= 9 \quad \text{when} \quad x = 3, \quad y = 9 \]

So \(d \) is tangent to the graph of \(y = f(x) \) at the point \(x = 3 \).

Continue problem 1 on page 5.
Work for problem 1(b)

\[f(x) = 4x^2 - x^3 \]
\[0 = 4x^2 - x^3 \]
\[= x^2(4 - x) \]
\[x = 0, 4 \]

\[y = 18 - 3x \]
\[0 = 18 - 3x \]
\[-18 = -3x \]
\[x = 6 \]

\[S = \int_3^4 (18 - 3x) - (4x^2 - x^3) \, dx + \int_4^6 (18 - 3x) \, dx \]
\[= 1.917 + 6 \]
\[= 7.917 \]

Work for problem 1(c)

\[V = \pi \int_0^4 (4x^2 - x^3)^2 \, dx \]
\[= \pi \cdot 156.04 \]
\[= 490.21 \]