

AP® Biology 2003 Sample Student Responses

The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program[®]. Teachers may reproduce them, in whole or in part, in limited quantities for noncommercial, face-to-face teaching purposes. This permission does not apply to any third-party copyrights contained herein. This material may not be mass distributed, electronically or otherwise. These materials and any copies made of them may not be resold, and the copyright notices must be retained as they appear here.

These materials were produced by Educational Testing Service® (ETS®), which develops and administers the examinations of the Advanced Placement Program for the College Board. The College Board and Educational Testing Service (ETS) are dedicated to the principle of equal opportunity, and their programs, services, and employment policies are guided by that principle.

The College Board is a national nonprofit membership association whose mission is to prepare, inspire, and connect students to college and opportunity. Founded in 1900, the association is composed of more than 4,300 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 22,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of equity and excellence, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com

Copyright © 2003 College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter, Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks of the College Entrance Examination Board. AP Central is a trademark owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly owned by the College Entrance Examination Board and the National Merit Scholarship Corporation. Educational Testing Service and ETS are registered trademarks of Educational Testing Service. Other products and services may be trademarks of their respective owners.

For the College Board's online home for AP professionals, visit AP Central at apcentral.collegeboard.com.

Probability (p)		Degrees of Freedom (df)				
	1	2	3	4	5	
0.05	3.84	5.99	7.82	9.49	11.1	

The formula for Chi-squared is:

$$X^2 = \sum \left[\frac{(o-e)^2}{e} \right]$$

where o = observed number of individuals

e = expected number of individuals

Σ = the sum of the values (in this case, the differences, squared, divided by the number expected)
a) The genotypes of the original parents the
a) The genotypes of the original parents with Xe Xe for the female and XEY for the male.
The frait is sex-linked, only carried on the X chromosome. The female is homozygous recessive for white eyes while the male has a single
chromosome. The female is homozygous recessive
efor white eyes while He make has a single
dominant gene. The validity of Hose gentypes
dominant gene. The validity of Hese glustypes can be seen with a prinnett square:
XE 星 Y_
Xe XEYE XeY
Xe XEXe Xe Y
In the F, generation half of the offspring are
females hetero Eygous for wild-type eyes while
he other half are males with white-eye goes.

1) The amount of and a continue to any
b) The expected genotifies for generality
shown in a funnett square
\times^2
VE VEVE VEV
X X X X Y
Xe Xe Xe Xe X
Wild-type females white-eyed females (xexe) wild-
type males (XEV) and white-yed males (XEY) Should
Il show up in equal proportions (1:1:(:1). Thus,
it is expected that for the 100 individuals of
generation F2, 25 individuals should show each
shenotype. The would be the expected count for
each ferm in the X test.
$\gamma^2 = (23-25)^2, (31-25)^2, (22-25)^2, (24-25)^2$
25 25 25
=4+36+9+1-50-2
25 25
df=(rows-1)(cds-1)=(1)(3)=3
of = (rows-1)(cots-1)=(1)(3)=3 The critical value for the X2 test statistic at the
The critical value for the χ^2 test statistic at the $\chi = 0.05$ significance level is $\chi^2 = 7.82$. Since
The critical value for the χ^2 test statistic at the $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 7.82$, Since
The critical value for the χ^2 test statistic at the $\chi^2 = 0.05$ significance level is $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 2$) is less than
The critical value for the χ^2 test statistic at the $\chi^2 = 0.05$ significance level is $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 2$) is less than
The critical value for the χ^2 test statistic at the $\chi^2 = 0.05$ significance level is $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 2$) is less than
The critical value for the χ^2 test statistic at the $\chi^2 = 0.05$ significance level is $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 2$) is less than
The critical value for the χ^2 test statistic at the $\chi^2 = 0.05$ significance level is $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 2$) is less than
The critical value for the χ^2 test statistic at the $\chi^2 = 7.82$. Since the observed χ^2 statistic ($\chi^2 = 7.82$) is less than

ADDITIONAL PAGE FOR ANSWERING QUESTION 1

	ADDITIONA	L PAGE FOR ANSV	VERING QUESTIC	N 1	
of a a	afferent	amin	s acid	Tan	pormas,
regulting	in a	ontein	too bro	own en	ie color
resulting rather 4	Lan The	Lygical	indd-Ly	re or	white
	, , , , , , , , , , , , , , , , , , , 	Jan San	11		
		<u>. </u>			
		·_			
					· <u></u>
-					
			<u> </u>		
		 			
					<u> </u>
		···	· · · · · · · · · · · · · · · · · · ·		
				·	
		<u> </u>			
					· · · · · · · · · · · · · · · · · · ·
·					
			_		
				.	<u>. </u>
		<u> </u>		•	•
				<u>-</u>	· · · · · · · · · · · · · · · · · · ·
	· · ·		_		
					

Critical Values of the Chi-Squared Distribution

Probability (p)	Degrees of Freedom (df)				
	1	2	3	4	5
0.05	3.84	5.99	7.82	9.49	11.1

The formula for Chi-squared is:

$$X^2 = \sum \left[\frac{\left(o - e \right)^2}{e} \right]$$

where o = observed number of individuals

e = expected number of individuals

Σ = the sum of the values (in this case, the differences, squared, divided by the number expected)
a) The original parents had the genotype
EY and ee. The trait must be sex-linked
because in the F. generation each phenotype
occured in either females a males, but
not both. The notes of Wild type to
White-eyed is approximately 1:1, and by
crossing EX and ee (where EX is the father,
ee is the mother), a !: 1 ratio of phenotypes
is produced so that all females are one
itupe, all males are another:
E E E EY EE = Wild Type Jemales E E e e Y e Y = White - eyed males e E e e Y
e Ee et et= White-eyed males
e Ee e Y
In this cross, the allele for wild type eyes
is dominant and for white-eyes is recessive.
0

e Y
B E EY ADDITIONAL PAGE FOR ANSWERING QUESTION 1
e ee et 100 individuals were tested, and
since the ratios of male to female and
wild to white are both predicted to be
1:1, each genders phenotype would have an expected number of 25 individuals
12= 2 (0-ex) Wild Male 23-25=(-2)2=4
25
Wild Female 31-25=(6)= 36
White Male 22-25 x= 3) = 9
25
White Female 24-25=(-1)2=
$\frac{4}{36+9+1} = 50 = 2$ 25
25 25 25 25
2=5.99
This is the Chi-squared value
C) a metation is any random sportaneous
change in the genotype of an individual. Et can be as small as the change in one
Tet can be as small as the change in one
base pair, or ate relocation of a entire
codon.

Critical Values of the Chi-Squared Distribution

Probability (p)	Degrees of Freedom (df)					
	1	2	3	4	5	
0.05	3.84	5.99	7.82	9.49	11.1	

The formula for Chi-squared is:

$$X^2 = \sum \left[\frac{(o-e)^2}{e} \right]$$

where o = observed number of individuals

e = expected number of individuals

 Σ = the sum of the values (in this case, the differences, squared, divided by the number expected)

i) The genotype of the original female fruit fly is:
xexe, and the genotype of the original nale
fruit fly is: X = y, Thus us known because bloides
the I brown - eyed semale in the FI generation, all the rest
of the FI genales are wild-type, and all the FI males are
white eyed. Because there are only white-eyed males in FI, each
male has to have gotten the receive "e" allele from
his mother. Because no FI males show they received a dominant
"E" allele from his mother, one can conclude that both of the
mother's alleles were the recessive "e's. One can then
also can conclude that the original male carried the dominant
allele. This is the only way all the females in the Fl generation
can be wed type, If the original male carried the recessive
allele, that allele combined with the recessive allele from the
mether would produce all white-eyed genales in the FI
generation.

The purrett square for the original cross would be:
x x x x x all the females are heterogygous y x y x y dominant (wild-type) and all the malls are reconsist (white -en al)
x x x x all the females are heterozygous
y x y x y domenant (wild-type) and all the
males are recessive (white regel)
THO FR generation further proves the genotypes of the P generation.
wed-type males are present in the F2 generalion in approximately
the same amount as white-eyed males. This is because all the
females in Fl are heteroxygous meaning the each have one dominant
allele "E" and one recensure allele "e". This means that all the
males have a 50% chance of receiving the dominant allele
and a 50% chance of receiving the receiving allele. White-
could females and also present in the F2 generation be cause
like the males, they also have a 50% chance of receiving the
socessive allolo "e" from the per heteronyanes mother and the
recessive allele "e" from the me heteropygous mother, and the F2 females always necess a recessive "e" from the father
· · · · · · · · · · · · · · · · · · ·
The punnett square for FIXFI is:
JE R JE E
e E e e e
$\frac{\chi_{\chi}\chi_{\chi}\chi_{\chi}}{ \xi } = \frac{\chi_{\chi}\chi_{\chi}}{ \xi } = \frac{\chi_{\chi}\chi_{\chi}}{ \xi }$
Y X Y X Y
· 25 wild-stype females
· 25 white-eye Cemalls · 25 and-type males
25 with the males
. 25 unte-eye males

ADDITIONAL PAGE FOR ANSWERING QUESTION 1

$\frac{1}{2} = \frac{1}{2} \left[(0-e)^2 + \frac{1}{2} + 1$
$\frac{(23-25)^{2}}{25} + \frac{(31-25)^{2}}{25} + \frac{(22-25)^{2}}{25} + \frac{(24-25)^{2}}{25}$
and-type male wild-type while-eyed white-type while female
$\frac{4}{25} + \frac{30}{25} + \frac{9}{25} + \frac{40}{25} - \frac{1}{25}$
The chi-squared test confums the genetypes of the P generation the actual and expected outcomes, as shown by the chi squared test are very similar (less than 2 degrees of freedom)
DNA un this case before going through meiosis. Two mutations
that could have occured are and inversion or a repetition,
And their sequence is not exactly correct the gene for eye color (in this case) may be changed. If an conversion were
to occur there would be extra immo and inverted in the
unild its messing, and if a repetition were to occur there would
completele changes a protein starting at primary structure
structure. a patien does not perform the same function when I shape is altered.

Critical Values of the Chi-Squared Distribution

Probability (p)	Degrees of Freedom (df)				
	1	2	3	4	5
0.05	3.84	5.99	7.82	9.49	11.1

The formula for Chi-squared is:

$$X^2 = \sum \left[\frac{(o - e)^2}{e} \right]$$

where o = observed number of individuals

e = expected number of individuals

 Σ = the sum of the values (in this case, the differences, squared, divided by the number expected)

(a.) The origional parents the	mother was a	homozygouse
secessive eard the father u	was a movembre E	in order
to get their offspring	mon	so that
white-eyes is a recessive	E Ex Ex	trait and
wild-type is dominant	x xe xexe	
	Exylexyl	
(b.) Wild-type male " "female	white mate	" "female
[= (23-25)2 = 16 5= (31-25)2 =	5= (22-25)2	7 = (24-25)2 0
25 110	14 25 100	25

(c.) A mutation is a change in the DNA sequence in an organism/cell in wich the sequence is different from the original. Two types of mutations are deletion, where a part of the sequence is totally omitted in the copying process and thus a whole new sequence is made, for example the original sequence ACLY TAT CCT becomes ACLY ATC CT—), and inversion where a new amino acid or

amino acid sequence is added to the sequen	neg (for
example ACG TAT CCT becomes ACG TA	C GHT CCT
these mutations could have produced the br	owne eyed
mutation b/c they changed the entire sequ	hence of
muchic acids in the DNA on a chrov	nosome so
that the sequence that coded for eyes wa	5 no longer
white or wild-type but brown.	
	
· · · · · · · · · · · · · · · · · · ·	<u> </u>
	