Marine Biology Simulation
Case Study

Chapter 4

Specialized Fish

After I demonstrated the dynamic population version of the simulation to the marine
biologists to make sure it met their needs, we talked about what modification should
be made next. They wanted me to create several new kinds of fish with specialized
patterns of movement to see what effect that would have on the simulation.

Problem Specification

The marine biologists decided that they would like to start by adding two new kinds of
fish to the simulation: fish that dart forward whenever possible and slow-moving fish.
These new types of fish would share all the attributes already defined for the Fish class

except that their movement behavior would be different. In particular, the biologists
decided that:

* A darter fish darts two cells forward if both the first and second cells in front of
it are empty. If the first cell is empty but the second cell is not, then the darter
fish moves forward only one space. If the first cell is not empty, then the darter
reverses its direction but does not change its location. Like objects of the Fish
class, darters never move in the same timestep as breeding.

* Aslow fish moves so slowly that, even when it does not breed, it only has a 1
in 5 chance of moving out of its current cell into an adjacent cell in any given
timestep in the simulation. Like objects of the Fish class, slow fish never move
in the same timestep as breeding and never move backward.

Design Issues

Although normal fish, darters, and slow fish exhibit different behavior when

moving, they also share many similarities. For example, the id, color, location,
and direction accessor methods have nothing to do with the particular type of fish
being modeled. At the abstract level of the act method, deciding when to breed, when
to move, and when to die, the different kinds of fish have the same behavior. The

Chapter 4 63
Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

particulars of how they breed and die are almost identical; the only difference is what
type of fish they generate when breeding. The primary difference among these three
kinds of fish, though, is how they move.

Rather than repeat the code for all the methods with the same behavior, [wanted to
use inheritance to implement the specialized kinds of fish. My idea was to create new
DarterFish and slowFish subclasses that would extend the Fish class. This means
that an object of the DarterFish (or sSlowFish) class would inherit certain data and
behavior defined in the Fish superclass, such as the accessor methods and the act,
breed, and die methods. It could also redefine the behavior of some superclass
methods by providing new implementations in the subclass. (This is also known as
overriding the superclass method.) For example, the DarterFish class could redefine
the generatechild method to create darter fish rather than normal fish, and redefine
the move method (or its helper methods) to move in a different way.

One question | had was, if a darter or slow fish used the act method inherited from
the Fish class, how would it know to use the redefined generatechild and move
methods from the barterFish or SlowFish class, instead of the methods from the
Fish class? [decided to ask Jamie. The answer was dynamic binding (sometimes
called polymorphism, according to Jamie). Here’s how it works. The simulation
object asks a particular fish (darter, slow, or normal) to act. Let’s say, for the sake of
simplicity, that the object is a darter fish.

* The parterFish class doesn’t have an act method defined in it, so it inherits
the generic act method from Fish. (We say that the call to act is dynamically
bound to the act method in the Fish class.)

* The object that is acting, though, is still a DarterFish object. When the act
method (inherited from Fish) calls move, it is actually the darter fish executing
the act method that is invoking the move method on itself. The barterFish
class does have a move method defined in it, so that is the one that’s executed.
(The call to move is dynamically bound to the redefined move method in the
DarterFish class.)

* Depending on how it is implemented, the redefined move method could
call another internal method, like 1ocation or emptyNeighbors. We’ll
see that in DarterFish the redefined move method calls nextLocation
(which it redefines) and 1ocation, direction, changeLocation, and
changeDirection (Which it does not redefine). This means that the call to
nextLocation Will be dynamically bound to the redefined method in the
DarterFish class, but the calls to location, direction, changeLocation,
and changeDirection will be dynamically bound to the inherited methods
from the Fish class.

Chapter 4 64
Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

The picture below shows an object of the DarterFish class, with the redefined methods
overlaying the methods they override. (Protected methods, which are meant to be used
internally, are shown inside the box representing the DarterFish object.)

DarterFish

DarterFish object | id

enyironment

|
| color
| |
| randomColor I| location
|
| breed I | direction
| generateChild I| —

| |

| nextLocation I| i
empiyMNeighbors I

I changelocation I

| changeDiraction I

die

act

One of the assumptions in this explanation of dynamic binding is that the darter or

slow fish has access privileges to the inherited methods (like act and 1location)and
that inherited methods (like act) have access to redefined methods (like move). This
would not be the case if these methods were private. For example, if the move method
were private in Fish and DarterFish, then the act method in Fish would always use
the move method from the Fish class, even for a darter fish, because that is the only
move method to which it would have access. Similarly, if the changeLocat ion method
were private in Fish, a redefined move method in a subclass would not be allowed

to invoke it. The protected keyword allows inherited methods in superclasses to

call methods that dynamically bind to methods in subclasses, and allows methods in
subclasses to call inherited methods in superclasses. The public keyword would allow
this also, but the protected keyword is an indication that the access is not meant to be
open to all classes. Unfortunately, Java does not guarantee that objects of other classes,
like the simulation class, do not make use of protected methods. This meant that I
needed to be very careful to check for myself that [used protected methods only in
subclasses, as intended, and that I did not use them in client code.

Once [understood dynamic binding and how I should use protected methods in the
marine biology simulation program, I felt comfortable implementing barterFish and
SlowFish as subclasses of the Fish class.

Chapter 4 65

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

Darter Fish

Implementation of the parterFish Class

The first thing [needed to do was create the empty DarterFish subclass, specifying
that it extends the Fish class.

public class DarterFish extends Fish

{
}

A subclass inherits its superclass’s data, can inherit or redefine its methods, and

can define new data and methods. In the case of DarterFish, I knew I wanted to
inherit most of the Fish methods but redefine the move method. According to the
specification, a darter can only move forward. It moves two spaces forward if it can,
and one space forward if it can’t move two spaces. If it can’t move at all, because the
cell in front of it is not empty, then it reverses its direction without moving.

I decided that my first step would be to modify the nextLocation method, which
defines how the fish chooses where to move. My redefined method finds the location

in front of the darter (in other words, the neighbor of the current location in the same
direction that the fish is facing) and the location in front of that (the neighbor of the one
in front, in the same direction). The new nextLocation method then checks whether
those spaces are empty. If neither location is empty, next Locat ion returns the darter’s
current location because it was unable to move. (My logic for deciding when a darter is
unable to move was incorrect, though, as I discovered later.)

The code below shows the first draft of my redefined nextLocation method, without
debugging messages.

protected Location nextLocation () // first draft!
// (warning: buggy!)
{

Environment env = environment () ;
Location oneInFront = env.getNeighbor (location (), direction()) ;
Location twoInFront = env.getNeighbor (oneInFront, direction()) ;
if (env.isEmpty(twoInFront))

return twoInFront;
else if (env.isEmpty(oneInFront))

return onelInFront;
else

return location() ; // can’t move, stay in

// current location

Chapter 4 66

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

I also needed to write a new move method for DarterFish, so that if the darter did not
change location, then it reversed its direction. Here is the new move method without
debugging messages.

protected void move ()

{

// Find a location to move to.
Location nextLoc = nextLocation() ;

// If the next location is different, move there.
if (! nextLoc.equals(location()))

{
}

else

{

changelocation (nextLoc) ;

// Otherwise, reverse direction.
changeDirection(direction () .reverse()) ;

The move method for barterFish was simple to write because the logical structure is
the same as the move method for Fish. The code is simpler, though, because when a
darter moves, its direction does not change.

I also needed to write one or more constructors for the DarterFish class, because
constructors are not inherited like other methods. Each class must explicitly define its
own constructors. The original Fish class has three constructors: one that specifies the
environment and initial location, one that also specifies the initial direction, and a third
that specifies environment, location, direction, and a color. For testing purposes I
decided to make all darter fish yellow. This was fine with the biologists; they had
primarily been using color to make the simulation more interesting, not to represent
meaningful information. At first I thought that because all darters would be the same
color, I didn’t need to provide the third constructor. Then I decided to go ahead and
provide it anyway, in case the biologists wanted to define darters with other colors later.

Below is the code for the first constructor. The only thing it has to do is to call the
appropriate superclass constructor (using the super keyword) to initialize the attributes
inherited from Fish, such as the location, direction, and color. The expression to geta
random direction is the same as that found in the two-parameter Fish constructor. The
code for the other constructors is practically the same, so it is not shown here.

public DarterFish (Environment env, Location loc)

{
// Construct and initialize the attributes inherited from Fish.
super (env, loc, env.randomDirection(), Color.yellow) ;
1
Chapter 4 67

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

Finally, I redefined the generatechild method to construct a new DarterFish rather
than a new Fish object, as shown below (without the debugging message). Everything
else about the method is the same. With the redefined generatechild method, I did
not need to copy or redefine the rest of fish breeding behavior but could inherit it from
the Fish class.

protected void generateChild(Location loc)
// Create new fish, which adds itself to the environment.
DarterFish child = new DarterFish(environment (), loc,
environment () .randomDirection (), color());

Analysis Question Set 1:
1. Whatis the logic error in Pat’s first draft of the nextLocation method?

2. A darter can only swim east and west or north and south. How might we
change the darter so that it usually continues east and west, or north and
south, but occasionally switches?

Testing the DarterFish Class

The new code for the barterFish class seemed pretty simple, so I thought I would test
it by just running it a number of times and seeing if the behavior seemed right. It did,

and I was about to move on to the s1owFish class when I noticed something odd. One
of the darters had hopped right over another fish! I ran the program a few more times
and saw the same behavior again.

I turned on debugging at the beginning of the step method in the simulation class
(and restored it before returning) to help trace fish activity throughout the simulation.

To help clarify when and where darters were moving and when they were blocked, I
added some debugging statements to the nextLocation method in DarterFish. [ran
the program and analyzed my results more carefully and realized that there were two
different situations that could cause these results, one of which was an error. One
situation was that the darter could have moved forward through an empty cell to get to
the second cell, and then another fish could have slipped from the side into the first
empty cell. This would be acceptable behavior, according to the program specification.

Chapter 4 68

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

The second situation was that the darter could have hopped over a fish to get to an
empty cell beyond it, because I had written nextLocation incorrectly. The code I had
written did not check that both the cell immediately in front of the darter and the cell
beyond that were empty. The corrected code appears below.

protected Location nextLocation () // corrected code!
Environment env = environment () ;
Location oneInFront = env.getNeighbor (location (), direction()) ;

Location twoInFront = env.getNeighbor (oneInFront, direction()) ;
if (env.isEmpty(oneInFront))
{
if (env.isEmpty(twoInFront))
return twoInFront;
else
return onelInFront;

}

// Only get here if there isn't a valid location to move to.
return location() ;

Because I had almost missed the error in nextLocation, I decided to go back to testing
more thoroughly, as the original programmer had done. I first developed black box test
cases to test the DarterFish class, basing them on the test cases for the Fish class.
Only the new or modified test cases are shown below.

A file with a single darter fish should run with no errors. (The behavior of the
fish will depend on its starting location and direction.)

A file with two or more darter fish, or with one darter and one non-darter fish,
in the same location should generate an error.

A file with either normal or darter fish in every location in the environment (but
only one in every location) should run with no errors. Whether they may move
or not depends on whether breeding and dying have been implemented (see the
appropriate test case from either Chapter 2 or Chapter 3). Any darters that do
not move should reverse direction.

A darter that does not breed and that has two empty neighboring locations in
front of it should always move forward two spaces. A darter that does not
breed and that has only one empty neighboring location in front of it should
always move into that location. A darter that does not breed and does not
change location should reverse its direction. This leads to a visual pattern
that is easy to spot — darter fish appear to pace back and forth in the
bounded environment.

All darter fish should be yellow. (This is actually based on an implementation
decision, not on the original problem specification.)

Chapter 4 69

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

I then considered the code in the new move and nextLocation methods to see if |
needed to develop additional test cases. It seemed that the black box cases listed above
would cover the new code. I decided to start my testing by rerunning my previous tests
with normal fish to verify that the results were the same and that my modifications had
not broken working code. This kind of testing is known as regression testing.

As I had with my previous test runs, I seeded the random number generator to get
predictable results (see Exercise 1 in Exercise Set 5 of Chapter 2). For the regression
tests it was important to use the same seed, and there was no reason to change the seed
for the new tests. I had already turned on debugging to find the bug in nextLocation.
Finally, | made a copy of £ish.dat and changed the six fish to six darter fish. I thought
that if T used the same seed and the same initial configuration of fish, then I would see
the same behavior for breeding and dying, although the movement would be different.
Then I ran the program. This time the darters moved exactly where I expected them to
move in each timestep.

To test breeding and dying, which are probabilistic, I needed to keep statistics for a
number of timesteps, as | had done for the normal fish. My results are below.

Total Total
1 (234|567 1|89 |10[after 10after 20

Number of darteractions | 6 | 9 |[11[16]16[19[23 |31 (42 45| 218 733

Number ofbreedattempts| 1 [1 [2 (1|2 |2 |4 |6 (7 4] 30 114

Number of deaths 1113212136119 39 139

After ten timesteps, the percentage of darters in all timesteps that had attempted

to breed was 13.8% (30 attempts at breeding in 218 calls to the act method); the
percentage that had died was 17.9%. This corresponded reasonably well to the 1 in 7
chance of breeding (14.3%) and the 1 in 5 chance of dying (20%) specified in the
problem description. I continued the test up to 20 timesteps. This time the percentages
were 15.6% for breeding and 19% for dying.

What surprised me, though, was that the numbers recorded for breeding and dying
darter fish were different from the earlier tests with normal fish, even though the
probabilities remained the same, the initial configuration was the same (except for the
name of the class), and I had used the same seed. I realized that the difference was that
the original breeding and dying fish use random numbers for movement as well as for
breeding and dying, but darters do not. Consequently, the random numbers used for
breeding and dying are different for the two populations of fish.

Chapter 4 70

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

Exercise Set 1:

1. Draw two diagrams illustrating each of the situations Pat discovered in which
a darter could hop over, or appear to hop over, another fish.

2. Run the marine biology simulation with the darter.dat and the
darterAndNormalFish.dat initial configuration files to see how the
behavior is different. (The difference is more obvious if you use the original
Fish class rather than the one from the breeding and dying chapter or if
the probabilities of breeding and dying are both set to zero. Or you can
temporarily comment out the lines of code in the Fish act method that
deal with breeding and dying.) /[Reminder: In the distributed version
of the case study, the class containing the main method is MBSGUT.
You can edit MBSGUI . java and follow the directions in the comments
to make darter fish appear different from normal fish or to include
darter fish as an option when creating a new environment using the
graphical user interface.]

3. Ifyou’re running a user interface that has a “Save” function, run the
simulation with the fish.dat configuration file and save a copy of the
results after 5 timesteps. Use the same seed you used in Chapter 3
(see Exercise 2 in Exercise Set 1). Give the file a descriptive name, like
chap4after5steps.dat. Run the program for 10 timesteps and save the
results in another file with a descriptive name. Compare the files you saved
in Chapter 3 with the files you just saved. Are the fish movements the same?
Why or why not? Run the program with the darter.dat configuration file
and save the results in a file for future regression testing. (Be sure to give the
file a name that will allow you to identify it later.)

4. Ifyouhave added constructors to the Fish class in addition to the three
original constructors from Chapter 2, analyze which of these constructors
should be added to the DarterFish class as well. Add them.

5. Redefine the tostring method in DarterFish to clarify that this is a darter.
This makes it easier to keep track of darters and normal fish in the debugging
output. Turn on debugging in the step method in simulation, as you did in
Chapter 3, and run the simulation again. This will let you observe the changed
behavior at a greater level of detail.

6. Choose a different seed for the random number generator and rerun your tests.
What effect does this have on the behavior of the simulation?

7. The darters always move east and west or always move north and south.
Create a subclass of the DarterFish class, called Turningbarter, that
behaves like DarterFish except that there is a probability of 0.1 that a
turning darter turns right or left (each with equal probability) before it tries
to move forward. To use the Random class, you will need to import
java.util.Random.

Chapter 4
Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

71

Slow Fish

Implementation of the slowFish Class

The behavior of a slow fish is very similar to the behavior of a normal fish, so again

I knew I wanted to inherit most of the Fish methods but redefine how (and when) it
moved. According to the specification, a slow fish moves so slowly that it only has a 1
in 5 chance of moving out of its current cell into an adjacent cell in any given timestep
in the simulation. When it does move, however, it moves just like any other fish of the
Fish class.

To test whether the fish should move, I knew [would randomly pick a number and
compare it to the probability of moving. The first design decision [had to make,
though, was whether to put that test in the move method or in the nextLocation
method. If I put it in the move method, then 4 out of 5 times it would do nothing. If 1
put it in the nextLocation method, then 4 out of 5 times it would return the current
location. Since it seemed like the test could go in either place, I decided to put it in the
lower-level, more specific method, nextLocation.

I decided to store the probability of moving, the mathematical value 1/5 represented
as a double, in an instance variable, just as I had with the probabilities of breeding
and dying. Then I redefined the nextLocation method to pick a double randomly
in the range 0f 0.0 to 1.0 (using the nextDouble method in java.util.Random),
and compare it to the instance variable representing the probability of moving. If

the randomly chosen number is less than the probability, the slow fish chooses a
new location in the usual way, otherwise it returns the current location. To choose
anew location, the slow fish calls super.nextLocation (), which executes the
nextLocation method in the Fish superclass. (Without the super keyword, the
call to nextLocation in the first return statement would be a recursive call to the
nextLocation method in slowFish. The super keyword forces the call to use the
inherited nextLocation method, which in this case is defined in Fish.)

Chapter 4

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

72

The code below shows the new instance variable and the redefined nextlLocation
method without debugging messages.

// Instance Variables: Encapsulated data for EACH slow fish
private double probOfMoving; // defines likelihood in each
// timestep

protected Location nextLocation()

{

// There's only a small chance that a slow fish will actually
// move in any given timestep, defined by probOfMoving.
Random randNumGen = RandNumGenerator.getInstance() ;
if (randNumGen.nextDouble () < probOfMoving)
return super.nextLocation() ;
else
return location () ;

The s1owFish class also needed new constructors, not only because constructors aren’t
inherited like other methods, but also because I needed to initialize the probofMoving
instance variable. Each slowFish constructor calls the four-parameter superclass
constructor (using the super keyword) to initialize the instance variables inherited

from Fish. To make slow fish easier to spot when testing, I decided to make them red.
The code below shows the two-parameter s1owFish constructor; the other constructors

are similar.

public SlowFish (Environment env, Location loc)

{

// Construct and initialize the attributes inherited from Fish.
super (env, loc, env.randomDirection(), Color.red);

// Define the likelihood that a slow fish will move in any given
// timestep. For now this is the same value for all slow fish.
probOfMoving = 1.0/5.0; // 1 in 5 chance in each timestep

Finally, I redefined the generatechild method to construct a new slowFish rather
than a new Fish, just as [had for barterFish.

Chapter 4 73

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

1.

Analysis Question Set 2:

What do you think are the advantages or disadvantages of putting the test for
whether to move in the nextLocation method instead of the move method?
Would the advantages or disadvantages be different if the problem
specification had said that slow fish randomly change direction when they do
not move beyond their cell?

Pat did not create an accessor method for the probofMoving instance
variable. What problem would this cause if you were to create a subclass of
SlowFish that redefined the nextLocation method again? Pat also did not
create accessor methods for the probofBreeding and probofDying instance
variables in Chapter 3. Under what conditions would this lack of accessor
methods cause problems?

If you were to create accessor methods for these instance variables, would
you make them public or protected?

Testing the slowFish Class

Asusual, I developed the black box test cases for the s1owFish class based on the test
cases for the Fish class. Only the new or modified test cases are shown below.

A file with a single slow fish should run with no errors. (The behavior of the
fish will depend on its starting location.)

A file with two or more slow fish, or with one slow and one other fish, in the
same location should generate an error.

A file with a fish in every location in the environment (but only one in every
location) should run with no errors, regardless of the types of the fish. Whether
they may move or not depends on whether breeding and dying have been
implemented (see the appropriate test case from either Chapter 2 or Chapter 3).

A slow fish that does not breed and that has one or more empty neighboring
locations in front of it or to its sides should move to one of'its neighbors
approximately 20% of the time. In other words, in each timestep approximately
one fifth of the slow fish that don’t breed should move. When a slow fish does
move, it should have an equal probability of moving to each of its valid empty
neighbors.

I then considered the code in the SlowFish nextLocation method to see if [needed
to develop additional test cases. It seemed that my final black box case would cover the
new code. [would still need to include all the test cases for normal fish when testing

Chapter 4 74

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

slow fish, though, because of the call to super.nextLocation ().Asusual, I decided
to start with regression testing (rerunning my previous tests) to verify that the results
were the same and that my modifications had not broken working code.

To help clarify why various fish failed to move, [added a debugging statement to the
nextLocation method in SlowFish to notify me when fish appeared not to move
because they were moving too slowly. Finally, I developed a new initial configuration file
that contained seven normal fish and seven slow fish. Then I ran the program with the
seeded random number generator. My results are below.

Total | Total
1[2(3[4]5]6([7]8]9 |10]after 10[after 20
Number of slow fishactions| 6 | 5| 59| 11|17]15(|16] 15|20 119 523
Number of breed attempts | O | O [1 [1| 2 21114] 4 16 76
... that were successful ofoj1]1f210f(1|1[|4]4 14 64
Number of calls to move 6514891171415 11 |16 105 459
gé;gfdaéﬁﬁnpted tomove 4ot olol1|ol2l2]1ls 4] 17 94
... but were blocked 0lo0fo]o0]O0 1 1 2 22
Number of deaths 1]0j]0]1]1 513 17 96

After ten timesteps, the percentage that had attempted to breed was 13.4% (16
attempts at breeding in 119 calls to the act method). Only 14 of the 16 attempts were
successful; two fish did not breed because there were no empty neighboring locations.
This led to 105 move attempts. Of these, 16.2% attempted to move out of their current
cell (17 out of 105), which was a little lower than I expected, given the 1 in 5 chance of
trying to move. The number of fish that actually moved was somewhat lower than the
number that attempted to move; twice there were fish that were blocked from moving
by other fish in neighboring locations. The percentage of slow fish that died in the first
ten timesteps was 14.3%, which was also low.

I continued the test up to 20 timesteps. This time the numbers (shown in the table
above) were much closer to what I expected.

Analysis Question Set 3:

1. InChapter 3, Pat added breeding and dying behavior by modifying the Fish
class. Another alternative would have been to create a subclass of Fish
with breeding and dying behavior, leaving Fish unchanged. What are the
advantages and disadvantages of the two alternatives? What would be the
impact on DarterFish and SlowFish?

2. A method is deterministic if, given the inputs to it, you can tell exactly what
its result will be. A method is probabilistic if, given the inputs, there are various
probabilities of different results. Of the nextLocation methods in Fish,
DarterFish, and slowFish, which are deterministic? Which are probabilistic?

Chapter 4 75
Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

1.

Exercise Set 2:

If you have added constructors to the Fish class in addition to the three
mentioned above, analyze which of these constructors should be added to the
SlowFish class as well. Add them.

Run the marine biology simulation with the slowAndNormalFish.dat

and 3species.dat initial configuration files to see how the behavior has
changed. (Again, you may find it easier to see the differences between types
of movement without breeding and dying behavior.)

Redefine the tostring method in slowFish to clarify that this is a slow fish.
This makes it easier to keep track of slow and normal fish in the debugging
output. Turn on debugging in the step method in Simulation, as you did in
Chapter 3, and run the simulation again. This will let you observe the changed
behavior at a greater level of detail.

Choose a different seed for the random number generator and rerun your tests.
What effect does this have on the behavior of the simulation?

Using Pat’s table of test run results, which may or may not match your own
results, calculate the following for 20 timesteps.

What percentage of slow fish attempted to breed in each timestep? (We’re
interested in the average over all 20 timesteps, not in the actual percentage
for any one timestep.) Does this percentage correspond with the specified

1 in 7 chance of breeding?

Consider the number of times the act method was called for slow fish over
those 20 timesteps, the number of fish that tried to breed, and the number
that bred successfully. Given these values, is the number of calls to the
move method what you would expect? In other words, is move being
called the correct number of times?

How many times was the nextLocation method in slowFish called over
the 20 timesteps? (Under what conditions is nextLocation called?)

How many times was the nextLocation method in Fish called over the 20
timesteps? (Under what conditions is the Fish nextLocation method called?)

Of the slow fish that did not breed, what percentage moved too slowly to
attempt to leave their cells? What percentage attempted to move beyond
their own cell (either successfully or unsuccessfully)? What percentages
would you expect, given the problem specification? Do the actual results
correspond to the expected results?

On average, what percentage died? What percentage would you expect,
given the problem specification? Does the actual result correspond to the
expected result?

Compared to the test results for 10 timesteps, are the actual results over 20
timesteps closer to the expected results as Pat claimed?

Chapter 4

76

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

A slow fish moves in each timestep, even when it doesn’t move far enough
to leave its current cell. As it moves slowly in its own cell, it may change
direction. Modify the slowFish class so that even when it doesn’t move
outside its cell it may still turn right or left (or continue in its current direction).

Implement breeding and dying behavior by creating a subclass of the original
Fish class. (See Question 1 in Analysis Question Set 3 above.)

Define anew circleFish subclass of Fish that constantly swims in a circle
(as much as is possible in a rectangular grid). In each timestep, the circle fish
moves to the location forward and to the right, on a diagonal from its current
location, if possible. It also changes its direction by turning 90 degrees to

the right. If the fish cannot move as described above, it stays in its current
location, but still turns 90 degrees to the right. Make the constructor give all
circle fish the same color, so they can easily be distinguished from other fish.

Refine the circleFish class to make the movement look more like a circle.
In the first timestep, a circle fish moves forward one location (if possible),
without turning. During the next timestep, it moves to the location forward
and to the right (if possible), as described in Exercise 8. If the fish cannot
move, it stays in its current location, but turns 90 degrees to the right. After
the fish has moved and turned, or just turned without moving, its next
movement will be to move forward one location. The fish continually
alternates these moves (except when it is unable to move and only turns).

Chapter 4

Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

77

Quick Reference for Specialized Fish Subclasses

This quick reference lists the constructors and methods associated with the specialized
fish classes, DarterFish and slowFish, introduced in this chapter. Public methods
are in regular type. Private and protected methods are in italics. (Complete class
documentation for the marine biology simulation classes can be found in the
Documentation folder.)

DarterFish Class (extends Fish)

public DarterFish (Environment env, Location loc)
public DarterFish (Environment env, Location loc, Direction dir)
public DarterFish (Environment env, Location loc, Direction dir, Color col)

protected void generateChild (Location Ioc)
protected void move ()
protected Location nextLocation ()

SlowFish Class (extends Fish)

public SlowFish (Environment env, Location loc)
public SlowFish (Environment env, Location loc, Direction dir)
public SlowFish (Environment env, Location loc, Direction dir, Color col)

protected void generateChild (Location loc)
protected Location nextLocation ()

Chapter 4 78
Copyright © 2002 by College Entrance Examination Board. All rights reserved.
Available at apcentral.collegeboard.com.

