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Suppose you wanted to know what a calculus course was like 50 or 100 or even 150 years
ago.  Where would you turn?  What would you study?  There are student descriptions of
what their classes and teachers were like; we even have some notebooks.  But by far the
most readily accessible source of information on what was covered and how it was
covered comes from textbooks.

Textbooks mold our courses.  We may not follow them exactly; we are likely to add and
subtract, omitting a section here, adding interesting asides there.  By and large, however,
our courses are organized around our books.  So looking at texts seems like a reasonable
way to discover how calculus has changed, at least for the beginner.

I’d like to be able to tell you that I began studying calculus texts some 20 years ago
because this was the question that fascinated me.  But that’s not the case.  I began because
I happened to have a copy of Elias Loomis’s book of 1860, Analytical Geometry and
Calculus1.  What fascinated me was that Loomis appeared to know nothing of Cauchy’s
work on the foundations of calculus, written some 40 years earlier2.  While I was clever
enough to know that it took time for ideas to filter down, particularly across an ocean, 40
years seemed a long time.  What I was to learn is that forty years is not so long and that
more of Cauchy than I realized was in Loomis.

What I’d like to do is talk about several topics that are handled quite differently, here at
the beginning of the twenty-first century, than they were in the nineteenth, hoping you’ll
find something novel to take back to your classroom.  As an historian, I want to be fair to
the materials I present by making it clear that these are not silly men who did not know
any better, but conscientious teachers trying to do right by their not always enthusiastic
students.

                                                  
1 Loomis, Elias:  Elements of analytical geometry and of the differential and integral
calculus, New York, Harper and Brothers, 1860
2 Cauchy, A. L., Cours d’analyse de l’école royal polytechnique. 1re partie: analyse
algébrique, Paris, 1821.
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NOTATION
Let’s start with notation.  When we write “ Lxf

ax
=

→
)(lim  ”, we have made use of a very

powerful notation.  First, we have a strong intuitive notion of what this means: “As x gets
close to ,a  )(xf gets close to L.”  Or, perhaps: “We can make f(x) as close to L as we like
by simply requiring that x be close (but not equal) to
 a.” Or, in utter desperation, we might even be driven to say: “Given ε >0, there is a
δ >0, such that if 0 < ax − <δ , then Lxf −)( < ε .” We are even naïve enough to

believe that this last formulation is, somehow, “natural.”  In fact, I came to the realization
that most math majors do not understand this “natural” formulation and how it is to be
used while (unsuccessfully) teaching Real Analysis for the twentieth or thirtieth time –
I’m a slow learner – and that it was no wonder that students had trouble with the concept
of limit in Calculus 1!

Now imagine that you were teaching calculus in 1840.  You are using the very popular
text by Charles Davies,3 and you want to teach your class how to find derivatives. You
need to understand that during this period, if calculus was being taught, it was being
taught to all students.  The curriculum had no options.  Furthermore, students generally
came to college with only a smattering of algebra and geometry, totally unprepared to face
calculus until much later.  At Harvard in 1830, for example, sophomores studied
trigonometry and its applications, topography, and calculus; this third of a year was all of
the calculus available to them.4  To make matters worse, you have neither limit notation
nor firm functional ideas available to you.

How are you going to be able to do this?  Well, here’s what Davies did:

Davies begins by noting that “if two variable quantity are so connected to each other that
any change in the value of one necessarily produces a change in the value of the other,
they are said to be functions of each other.”5  This symmetric view of the functional
relationship will prove very handy, for the text emphasizes the calculus of curves, as
opposed to that of a function.  (In practice, Davies is going to work with analytic
expressions like “ axyx 222 =+ ”.  While he introduces the notation “ )(xfy = ”6, he
seldom uses it.)

                                                  
3 Davies, Charles, Elements of the differential and integral calculus, improved edition,
New York, A. S. Barnes & Co., 1836.
4 Ibid, p. 132.
5 Davies, op. cit., p. 9.
6 Davies, op. cit., p. 10.



Permission to use granted by George Rosenstein.  Available at apcentral.collegeboard.com.             3

By page 15, Davies is ready to tackle what happens when the independent variable in a
functional relationship is incremented by h.   As a good teacher should, he first looks at a
couple of examples, 2axu =  and 3xu = . Letting u’ be the incremented value of the

function, he looks at 
h

uu −′
 and declares

If we examine the second members of these equations, we find a term in
each which does not contain the increment h. … If now, we suppose h to
diminish, it is evident that the terms 2ax and 3x2, which do not contain h,
will remain unchanged, while all the terms which contain h will diminish.
Hence the ratio

h

uu −′

in either equation will change with h, so long as h remains in the second
number of the equation; but of all the ratios which can subsist between

h

uu −′

is there one which does not depend on the value of h?  We have seen that as
h diminishes, the ratio in the first equation approaches 2ax, and in the
second to 3x2; hence 2ax and 3x2 are the limits toward which the ratios
approach in proportion a[s] h is diminished; and hence each expresses that
particular ratio which is independent of the value of h.  This ratio is called
the limiting ratio of the increment of the variable to the corresponding
increment of the function.  (Pp. 17, 18)

Davies goes on to say that “the limiting ratio of the increment of the variable to that of the
function … is called the differential coefficient of u regarded as a function of x.” (p.19)
Indeed, he never uses the term “derivative,” but sticks with “differential coefficient,” a
term introduced by Lagrange.7  He now immediately jumps to using differentials and
infinitesimals by saying “represent by dx the last value of h, that is the value of h, which
cannot be diminished according to the law of change to which h or x is subjected, without
becoming 0 and let us also represent by du the corresponding difference between u’ and u;
…”(p. 18)

                                                  
7 Lagrange, J. L., Théorie des functions analytiques, Paris, 1797.
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Notice that Davies is in a very awkward position: He has no notation for calculating
derivatives, so he must go back to first principles.  He gets around this by introducing a
property of the derivative used by Lagrange,8 namely that

2hPPhuu ′+=−′

where P is the differential coefficient and P’ will in general be a function of h as well as x.
He explicitly assumes this on the basis of his previous examples. (p. 21) Now he’s in
business!  He can use this to derive the rules of differentiation.  For example, you would
find his proof of the product rule quite familiar, although perhaps not the form of the
result.  Please remember that when Davies writes ,""u′ he does not mean the derivative of
u, but )( hafu +=′  in our notation:

Suppose 2hPPhuu ′+=−′  and .2hQQhvv ′+=−′

Then .)()()()()( 22 vhPPhhQQhuvuuvvuuvvuuvuv ′++′+′=−′+−′′=−′′=−′

Or .)()())()( 22 vhPPhhQQhuvuuvvuuvvuuvuv ′++′+′=−′+−′′=−′′=−′

Remembering that dxh = , .)()(
)(

vhPPhQQu
h

uvuv
′++′+′=

−′

So, “passing to the limit”, as Davies would say, .
)(

v
dx

du

dx

dv
uPvuQ

dx

uvd
+=+=

  Now multiply through by 
uv
dx

: 
v

dv

u

du
uvd +=)( .

I need to say something here about notation and names for the derivative.  You, of course,
are very aware that we have several that are in common use, as well as the fact that there
are several others that have either disappeared or are uncommon.

First, there are the notations of the founders, Leibniz’s “
dx

dy
” and Newton’s dots, where

dt

dx
x =& .  The former is still very much with us, although we see that Davies, and most

other nineteenth century writers treat it as a quotient; the latter is mostly gone, except for
some physicist-types.  Then there’s the operator notation, fDx , which appeared

sometime in the twentieth century.  Finally, there’s the notation due to Lagrange, )(xf ′ ,
which we know and love.

                                                  
8 See Grabiner, Judith V., The origins of Cauchy’s rigorous calculus, Cambridge, MA,
MIT Press, 1981, p. 118ff, for a discussion of the importance of this result.
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Lagrange wrote a very influential book in 1797, in which he attempted to build the
calculus on a foundation of Taylor series.9  His notion was this:  If you develop f(x+h) as
a series in powers of h, say, ⋅⋅⋅++++=+ 3

3
2

21)()( hAhAhAxfhxf , then ),(1 xfA ′=

the first derived function of  f, ),(2 2 xfA ′′=  the second derived function of f,

)(6 3 xfA ′′′= , the third derived function of f, and in general, ),(! )( xfAn n
n =  the nth

derived function of f.

Now, once you start thinking about this, you’ll see lots of problems, the most obvious of
which is “how do you find the series without being able to find derivatives?” since this is
“clearly” Taylor’s Theorem.  The important answer is that lots of series, including those
for trigonometric functions and logarithmic functions, were already well known, having
been derived in very clever ways.  (Lagrange is good reading, even in French, and I’d
recommend it if you have a student who is into that kind of stuff.)10  Most of Lagrange
has disappeared from our courses, but the name, differential coefficient, shortened to
derivative, and the prime notation, remain.

Now look again at Davies’s preferred product rule: “
v

dv

u

du
uvd +=)( .”  While

there are problems with this (suppose u = 0), it is very convenient for the extended
product rule, often called Leibniz’s Rule:  What is the derivative of ?321 nuuuu ⋅⋅⋅
In this formulation, the answer is “obvious”:

n

n
n u

du

u

du

u

du

u

du
uuuud +⋅⋅⋅+++=⋅⋅⋅

3

3

2

2

1

1
321 )( .

Before I look at Davies’s notion of an integral, let me go back to look at Davies and his
book a little more closely. Davies was born in 1798 in northern New York state.  He was
appointed to the United States Military Academy in 1814 and graduated in 1815,
somewhat speedier than usual, but the so-called curriculum was not much at this time.
However, he really did not leave the Academy until 1837, by which time he was
Professor of Mathematics.  He served in several other academic posts, including filling in
for a year for Elias Loomis, and finished his academic career at Columbia University in
1865.11  But Davies is best known as a writer of textbooks.

                                                  
9 Lagrange, J. L., Théorie des fonctions analytiques, Paris, 1797.
10 On Lagrange, and his development of derived functions, see any standard history of
calculus, such as Boyer, Carl B., The history of the calculus and its conceptual
development, New York, Dover Books, 1949.
11 See Ackerberg-Hastings, Amy, “Charles Davies, Mathematical Businessman” in
History of undergraduate mathematics in America, edited by Amy Shell-Gellasch, West
Point, NY, 2001.
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Davies wrote, or translated, or possibly even stole, books from arithmetic through
calculus with surveying and descriptive geometry thrown in.  Cajori, in his survey of
mathematics teaching in 1890, said, 13 years after Davies’ death, that Davies was “one
whose name is known to nearly every schoolboy in our land,”12 so popular were his texts.

Calculus books by Davies appeared between 1836 and 1901, a span of 65 years.  We’ll
look at the 1843 edition of Elements of the Differential and Integral Calculus.13

In his preface, Davies says,

The Differential and Integral Calculus is justly considered the most difficult
branch of pure Mathematics.

The methods of investigation are, in general, not as obvious nor the connection
between the reasoning and the results so clear and as striking, as in Geometry, or the
elementary branches of analysis.

It has been the intention, however, to render the subject as plain as the nature of
it would admit, but still, it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary Treatise on the Differential
and Integral Calculus.  It might have been much enlarged, but being intended for a text-
book, it was not thought best to extend it beyond its present limits. … 14

Davies goes on to say that “the works of Bourcharlat and Lacroix have been freely used,
although the general method of arranging the subjects is quite different from that adopted
by either of those distinguished authors.”15  In this he is dissembling, because the book is
really quite similar to Bourcharlet’s16, both in the text itself and in the examples used.
Unfortunately, in some of the places at which he differed from Bourcharlet, he made bad
choices.

Davies’ book is broken into eight numbered chapters and a ninth chapter on integral
calculus.  Each chapter in turn is broken into short sections.  The entire

                                                  
12 Cajori, Florian, The teaching and history of mathematics in the United States,
Washington, DC, U.S. Government Printing Office, 1890.
13 Davies, Charles, Elements of the differential and integral calculus, improved edition,
New York, A. S. Barnes & Co., 1836.
14 Ibid. p. 3.
15 Ibid. p. 4.
16 Bourcharlat, J.-L., Élémens de calcul différentiel et de calcul integral, quatrième
edition, considérablement augmentée, Paris, Bachelier …, 1830.  Editions of this book
appeared starting in 1813.  It was translated into English in 1828.
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book is 283 pages!  My most recent copy of Thomas17 is over 1000 pages. You would
immediately notice in Davies that there are very few exercises or problems for the student
to complete, a situation that would not really change until the twentieth century dawned.

I Definitions and Introductory
Remarks

VI Application of the Differential
Calculus to the Theory of Curves

II Differentiation of Algebraic
Functions – Successive
Differentials – Taylor’s and
Maclaurin’s Theorems

VII Of Osculatory Curves – Of Evolutes

III Of Transcendental Functions VIII Of Transcendental Curves – Of
Tangent Planes and Normal Lines to
Surfaces

IV Development of Any Function of
Two Variables – Differential of a
Function of any number of
Variables – Implicit Functions –
Differential Equation of Curves –
Of Vanishing Fractions

Integral Calculus

V Of the Maxima and Minima of a
Function of a Single Variable

The only application of the derivative ever considered by Davies is curve sketching, which
he does in detail, taking as many pages as he spends on all of the theory of the derivative
including Taylor series.18  He discusses not only maxima and minima, but cusps, multiple
points, evolutes and involutes, osculating curves, and transcendental curves, including the
cycloid.  Having spent 188 pages on topics that include some we might teach in Calculus
3, he’s ready to tackle integration.

For Davies, the integral is the antiderivative, “the method of finding the function which
corresponds to a given differential.”(p. 189) He goes on to explain on the next page that
the integral symbol denotes a sum and “was employed by those who first used the
differential and integral calculus, and who regarded the integral of dxxm  as the sum of all
products which arise by multiplying the mth power of x for all values of x by the constant
dx.”  Davies now spends 50 pages on techniques of integration.  On p. 252, he finally gets
around to introducing the

                                                  
17 Finney, Ross, Maurice Weir and Frank Giordano, Thomas’ calculus, 10th edition,
Boston, Addison-Wesley, 2001
18 Rosenstein, op. cit., p. 83.
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notation “
p
b

dyy
p

b

3
1 3

0

2 =∫ .”  The notion of a Fundamental Theorem of calculus is entirely

missing! The book ends with 40 pages of geometric applications of the integral, including

arc length (he already knows that 22 dydxds += ), areas, and volumes including double
integrals.19

We have seen here a very different view of the standard calculus course, and we should
realize that, although the subject was about 150 years old at the time, it had a long way to
go before it resembled the AP syllabus.

Of the eight authors who began publication before 1860, only one (Loomis) had studied
abroad and four were products of West Point.  Six of the eight used limits as their
fundamental approach to the derivative, but two, Benjamin Peirce and William Smyth
used infinitesimals.

(Peirce was the only “professional mathematician” in the list.  He was a founding
member of the National Academy of Sciences and the author of Linear Associative
Algebra, America’s first major contribution to pure mathematics.  His calculus book,
however, was a pedagogical nightmare.)

TABLE 1: Commercial Authors Who Began Publication Before 1860

      Name Dates Edit Education Positions
      Davies 1836-1868 many USMA* USMA, Columbia
      Peirce 1841-1862 3 Harvard Harvard
      Church 1842-1872 many USMA USMA
      M'Cartney 1844-1848 2 Jefferson Lafayette
      Loomis 1851-1902 many Yale, Paris Yale, Western Reserve,

U. City of New York
      Smyth 1854-1859 2 Bowdoin Bowdoin
      Courtenay** 1855-1876 8 USMA USMA, U. PA, U. VA
      Quinby 1856-1879 6 USMA USMA, U. Rochester

      Dates = span of frequent publication
      Edit = number of editions
      * United States Military Academy
      ** Courtenay died in 1853, leaving a manuscript.

                                                  
19 Much of what I’ve said above was blissfully stolen from my own paper referenced
above.
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INFINITESIMALS
Let me go on now to a different author, a different time period and a different kind of
calculus book.  After the Civil War, higher education was a booming business in
America.  The Morrill Act, creating the land-grant colleges, encouraged states to begin
universities; the westward expansion provided people for these new universities; and a
desire for a practical education, primarily engineering and agriculture, provided a more
receptive audience for calculus courses.  Furthermore, electives were becoming
fashionable, so that the audience for calculus courses became more specialized.  Indeed,
the book we’ll look at was written for the “purely optional course” at Columbia.20

Finally, wealthy industrialists were funding universities, like Cornell and Johns Hopkins,
both named for their benefactors.  In the last quarter of the nineteenth century, German-
style universities began to replace the classical college as the standard for higher
education in America.21

                                                  
20 Peck, William Guy, Practical treatise on the differential and integral calculus, New
York, A. S. Barnes &Co., 1870.  All references are to this edition.
21 See Rudolph, Frederick, The American College and University: A History, New York,
1968



Permission to use granted by George Rosenstein.  Available at apcentral.collegeboard.com.             10

TABLE 2: Commercial Authors Who Began Publication 1870-1895

      Name Dates Edit Education Positions
      Olney 1870-1885 4 no formal Kalamazoo,

U. Mich
      Peck 1870-1877 5** USMA* USMA, U. Mich,

Columbia
      Johnson## 1873-1909 many Yale USNA#, Kenyon,

St. John's
      Buckingham 1875-1885 3 USMA Kenyon
      Byerly 1879-1902 many Ph.D. Harvard Cornell, Harvard
      Bowser 1880-1907 many Santa Clara,

Rutgers
Rutgers

      Osborne 1889-1910 many Harvard USNA#, MIT
      Taylor 1884-1902 9 Colgate Colgate
      Bass 1887-1905 6 USMA USMA*
      Newcomb 1887-1889 2 Harvard Naval Observatory,

Nautical Almanac,
Johns Hopkins U.

      Dates = Span of frequent publication
      Edit = number of editions
      * United States Military Academy
      # United States Naval Academy
      ** includes an edition published after 1877
      ## includes the books written jointly with John Minot Rice
      Authors in italics used infinitesimals; in boldface, rates

Looking at the list in Table 2, you will not see many familiar names.  Two, however,
should jump out at you.  One is Byerly, the first Ph.D. on our list and one of Harvard’s
first as well.  The second is Simon Newcomb, who was the fourth president of the AMS.
In the “official” history of the AMS, his biography takes up more pages than the sum of
those of the first three presidents.  He was an internationally recognized astronomer.22

The author I want to look at, however, is William Guy Peck.

Peck, born in 1820, was one of the “West Point boys,” graduating first in his class in
1844 and returning to be assistant professor of natural and experimental philosophy and
mathematics from 1846 to 1855.  He was also Charles Davies

                                                  
22 Archibald, Raymond Clare, A semicentennial history of the American Mathematical
Society 1888 – 1938, AMS, 1938.
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son-in-law!  After leaving the military academy, he taught physics and engineering at the
University of Michigan for two years, before returning east to serve at Columbia from
1857 until his death in 1892.  He was a very popular teacher and the author of a number
of texts in both mathematics and science.  We’ll look at his 1870 book, Practical Treatise
on the Differential and Integral Calculus.23

Peck based his calculus on infinitesimals, a technique that was still dying, as we shall see,
80 years later.  Authors chose to use infinitesimals because they were simpler and they
facilitated the application of calculus to practical problems.  These authors knew about
limits; they just thought they got in the way of learning calculus.  Amazingly, I agree
with them.  The more I look at the use of infinitesimals, the better I like them!
Unfortunately, the pure mathematician in me won’t let go.

PART I –DIFFERENTIAL
CALCULUS

III. Singular Points of
Curves

II. Areas of Plane Curves

I. Definitions and
Introductory Remarks

IV. Maxima and Minima III. Areas of Surfaces of
Revolution

II. Differentiation of
Algebraic Functions

V. Singular Values of
Functions

IV. Volumes of Surfaces of
Revolution

III. Differentiation of
Transcendental Functions

VI. Elements of Geometrical
Magnitudes

PART V – APPLICATIONS
TO MECHANICS AND
ASTRONOMY

IV. Successive
Differentiation and
Development of Functions

VII. Application to Polar
Coordinates

I. Centre of Gravity

V. Differentiation of
Functions of Two Variables
and of Implicit Functions

VIII. Transcendental Curves II. Moment of Inertia

PART II –
APPLICATIONS OF THE
DIFFERENTIAL
CALCULUS

PART III – INTEGRAL
CALCULUS

III. Motion of a Material
Point

I. Tangents and Asymptotes PART IV –
APPLICATIONS OF THE
INTEGRAL CALCULUS

II. Curvature I. Lengths of Plane Curves

                                                  
23 Peck, op. cit.
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Peck begins by defining a function.  He supposes that a relationship between two
variables is expressed by an equation.  Then one of the variables is called the independent
variable and the other is said to be a function of the first.  He also admits functions of
several variables and uses functional notation.  Now he wants to develop infinitesimals.

A quantity is … infinitely small with respect to [another] when the quotient is less than
any assignable number.  If the term of comparison is finite, [these quantities are called]
infinitesimals.

Infinites and infinitesimals are of different orders. Let us assume the series,

..,,,,,,.. 32
23

axaxaxa
x

a

x

a

x

a

in which a is a finite constant and x is a variable.  If we suppose x to increase, the
terms preceding a will diminish, and those following it will increase; when x becomes

greater than any assignable quantity, 
x
a

 becomes infinitely small with respect to a, and

because each term bears the same relationship to the one that follows it, every term in
the series is infinitely small with respect to the following one, and infinitely great with
respect to the preceding one.  The quantity ax being infinitely great with respect to a
finite quantity, is called an infinite of the first order; ,, 32 axax etc., are infinities of the

second, third, etc., orders.  The quantity 
x
a

 being infinitely small with respect to a

finite quantity is call an infinitesimal of the first order; ,,
32 x

a

x

a
 etc., are infinitesimals

of the second, third, etc., orders. (p. 13)

Well, now that we have that straight, we can establish some rules for working with these
babies!

If these definitions and explanations have left you reeling, consider the plight of poor
students – both his and yours – when we introduce arcane material, like ε and δ, and
uniform convergence into our classes.  What’s more, all authors eventually got to
infinitesimals – remember Davies’s dx.  Finally, Cauchy himself defined an infinitesimal
as a variable with limit zero,24 a definition that persisted to 1950 and beyond.  While
Davies seemed to imagine a real line with holes in it, with Peck, this is not clear and with
Cauchy, it’s gone.  If you are into that kind of thing, you might see if you can bring
twentieth century rigor to any of this.  It’s not easy.  I’m not even sure it’s possible.

                                                  
24 Cauchy, op. cit.
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What redeems Peck is that he lays out some rules for working with infinitesimals that
allow students to manipulate them without having to worry about their ontological status.

“In general the product of an infinitesimal of the mth order by one of the nth order, is an
infinitesimal of the (m + n)th order.  The product of a finite quantity by an infinitesimal of
the nth order is an infinitesimal of the nth order.

“…Hence, whenever an infinitesimal is connected, by the sign of addition, or subtraction,
with a finite quantity, or with an infinitesimal of lower order, it may be suppressed without
affecting the value of the expression into which it enters.” (p. 14)

We’ll see how this works in a minute, but first, let’s look at the “General method of
Differentiation,” which immediately follows this material:

“In order to find the differential of a function, we give to the independent variable its
infinitely small increment, and find the corresponding value of the function; from this we
subtract the preceding value and reduce the result to its simplest form; we then suppress
all infinitesimals which are added to, or subtracted from, those of lower order, and the
result is the differential required.

This method of proceeding is too long for general use, and is only employed in deducing
rules for differentiation.” (pp. 14-15)

Notice that there is no definition of a differential, only rules for finding one.

Here’s the quotient rule:  We want to find 







t

s
d .  So, following the instructions,

tdtt

sdttds

tdtt

sdtsttdsst

t

s

dtt

dss

+

−
=

+

−−+
=−

+

+
22

.  Now we can suppress the tdt term, since it is

an infinitesimal of the first order, added to a finite quantity. Thus, 2t

sdttds

t

s
d

−
=








.  Now

wasn’t that easy?

Peck goes on to define the differential coefficient as, of course the quotient 
dx

dy
, which

makes perfect sense in his system.

One of the advantages infinitesimals had, according to its advocates, was that they made
applications easier.  These folks envisioned a curve as composed of infinitesimally short
lines.  The geometry of these lines is exactly the same as the geometry of their big
brothers, so using them became only a matter of imitating what we would do as
approximations.  What is the slope of a tangent line?  Why the rise over the run, of course,

and that’s just exactly what 
dx

dy
 is! Similarly, 

22 dydxds +=  is not just approximately

the differential of arc length, it really is the right thing, by the Pythagorean theorem.  And,
if you are thinking ahead, you’ll see that the advantages for applications of the integral are
even greater.
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Peck devotes nearly a quarter of his book to applications of the differential calculus,
covering the same ground as Davies.  Later, at the end of the book, he studies motion,
including acceleration and the velocity of a point rolling along a curve.25

Integration, of course, is the process by which one might find the function from which a
differential may have been derived.26 There follows 50 pages of techniques of integration.

Since differentials of area under a curve, dxxf )( , and arc length, 22 dydxds += , have
been discussed earlier, those applications are immediate, but he’s also set up the
differentials of volumes of revolution, ,2dxydV π=  and surface area, ,2 ydsdS π=  making
those applications easy also.

Perhaps the most distinctive feature of the book is the applications to mechanics and
astronomy, the last part of the book.  Here, he not only worries about velocity and
acceleration, but also center of gravity, moments of inertia, and simple pendulums.  Once
again, the infinitesimal approach proves valuable, which is the reason you may find
physicists and engineers still using it as a way to derive their formulas!

THE MODERN SYNTHESIS

Looking at my list of authors for 1895 to 1910, you’ll see some names you might
recognize, for example Osgood, a prominent Harvard mathematician and eighth president
of the AMS.27  This is quite a different collection of authors.  For example, look at the
number of PhDs.  Notice also that a number had studied in Europe.  This is the period of
professionalization in the American mathematics community.  The AMS had been
formed in 1888, and its membership doubled between 1895 and 1907 to 568.

                                                  
25 see Peck, op. cit., pp.53 – 99 and pp. 171 – 205.
26 Peck, ibid., p 102.
27 Achibald, op. cit., p. 153 – 55.


