
AP ®

Computer
Science
2007–2008
Professional Development
Workshop Materials

Special Focus:
GridWorld Case Study

The College Board: Connecting Students to College Success

Th e College Board is a not-for-profi t membership association whose mission is to connect students

to college success and opportunity. Founded in 1900, the association is composed of more than

5,000 schools, colleges, universities, and other educational organizations. Each year, the College

Board serves seven million students and their parents, 23,000 high schools, and 3,500 colleges

through major programs and services in college admissions, guidance, assessment, fi nancial aid,

enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/

NMSQT®, and the Advanced Placement Program® (AP®). Th e College Board is committed to

the principles of excellence and equity, and that commitment is embodied in all of its programs,

services, activities, and concerns.

For further information, visit www.collegeboard.com.

© 2007 Th e College Board. All rights reserved. College Board, Advanced Placement Program, AP,

AP Central, AP Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the

College Board. AP Potential and connect to college success are trademarks owned by the College

Board. All other products and services may be trademarks of their respective owners. Visit the

College Board on the Web: www.collegeboard.com.

ii

1

AP® Computer Science
Special Focus Materials for 2007–08
GridWorld Case Study

Table of Contents

I. Introduction ...3

II. “Content-Enrichment” Articles

A. The Design of the GridWorld Case Study ...5

B. Integrating GridWorld ..18

III. Instructional Units/Lessons

A. Early Exercises with GridWorld ...26

B. Board Game Projects ...31

C. Ant Farm Project ..44

D. Save My Heart ..56

IV. About the Authors ..75

Table of Contents

3

Introduction

Debbie Carter, editor

Lancaster Country Day School

Lancaster, Pennsylvania

Starting with the 2007–08 academic year, a new case study based on a grid—called

“GridWorld”—will be a required part of the AP® Computer Science A and AB curricula.

GridWorld provides a graphical environment in which students can experiment with

diff erent types of objects, observing the ways in which programming changes aff ect the

objects’ behavior. Questions related to this case study will fi rst appear on the 2008 AP

Computer Science Exams. (AP Computer Science Newsletter, No. 6, Nov. 15, 2006).

We have commissioned a group of articles and instructional materials to help you prepare to

use the GridWorld case study to teach computer science.

Th ose of us who are familiar with the Marine Biology Simulation (MBS), the previous

AP Computer Science case study, will fi nd some familiar features in GridWorld. As Cay

Horstmann explains in his article, “Th e Design of the GridWorld Case Study,” GridWorld’s

design grew from what we learned from our experiences with the MBS in the classroom.

We wanted more fl exibility in the types of objects that could populate the world, as well as in

the ways that they could be displayed. An object in the world can

 • be displayed using an external graphic or via a graphics display class;

 • examine a list of other objects in the world and respond to one or more of them;

 • behave independently of other objects (or not at all).

In “Integrating GridWorld,” Jill Kaminski gives us both an overview and some detailed

practical advice about how we might eff ectively weave the case study throughout our AP

Computer Science courses.

Four additional authors, all computer science educators, have contributed hands-on

instructional materials, with complete solutions, descriptions of teaching strategies, and

suggestions for diff erentiation for students of varying needs. I would like to thank the

contributors for their hard work and cooperation, as well as their continuing commitment to

the AP Computer Science community.

We know that you’ll fi nd many treasures in the next several pages, ready to be used to excite

your AP Computer Science students!

Introduction

4

Special Focus: GridWorld Case Study

References

College Board. AP Computer Science Course Description, May 2007, May 2008.

College Board. AP Computer Science A and AB Newsletter. No. 6 Nov. 15, 2006.
http://www.collegeboard.com/email/ap_compsci_n8490.html

5

The Design of the GridWorld Case Study

Cay S. Horstmann

San Jose State University

San Jose, California

Abstract

In this article, I describe the rationale behind decisions that were made in the design of

the GridWorld case study. Knowing about these decisions can be useful to address student

questions, or simply to satisfy your own curiosity. I also give information about the inner

workings of the GUI that is helpful for designing your own worlds.

A Brief History of GridWorld

In 2004, the AP Computer Science Development Committee solicited proposals for a

new case study. Th e committee received a number of interesting suggestions, but none of

them had the fl exibility of the Marine Biology Simulation (MBS) case study for producing

exam questions. Instead, we decided to make the MBS code more generic, to easily handle

creatures other than fi sh, and to remove inessential classes. Th e redesign was governed by

four themes:

 • Continuity. Teachers who are familiar with MBS should feel right at home in

GridWorld.

 • Simplicity. Students who see GridWorld for the fi rst time should not be

overwhelmed.

 • Testability. Th e framework should give rise to many kinds of exam questions.

 • Extensibility. Enthusiasts should be able to design grid-based games, mazes, puzzles,

simulations, and so on, without GUI programming.

Th e fi rst prototype of GridWorld appeared in March 2005. It consisted of the MBS code, with

one important change—the ability to add GIF images instead of having to use Java graphics

for drawing occupants. It turns out that this ability was already present in the MBS GUI

code, but it was well hidden. Figure 1 shows the very fi rst GridWorld screen capture; note

the cuddly critter and the frame title.

Th e next months were the “Cambrian explosion” of GridWorld, with numerous exotic

life forms appearing rapidly: rock hounds that search for rocks by recursively asking their

neighbors, robots that drop fl owers, potato-shaped cells, fl ocks of “boids,” and aliens. Th ey

became extinct, to be replaced with the bugs and critters that we know today.

The Design of the GridWorld Case Study

6

Special Focus: GridWorld Case Study

Figure 1—First GridWorld screen capture.

Th e other major innovation was the direct manipulation interface that allows students

to invoke constructors and methods. I had always admired this capability in BlueJ and

experimented with controlling grid occupants from the BlueJ workbench. Th at proved too

cumbersome, and I ended up implementing direct manipulation inside GridWorld. Figure 2

shows another historic fi rst—the fi rst screen capture of the method menu. Note the method

names and parameters!

Figure 2—First screen capture of the method menu.

7

Chris Nevison and Barbara Cloud Wells joined in September 2005 to produce the narrative.

Th ey invented the crab and chameleon critters that show off the template method pattern.

Shortly aft er the narrative was released, we were delighted to receive a beautiful set of

icons from Chris Renard, a student at the School for the Talented and Gift ed of the Dallas

Independent School District.

Th e design of GridWorld has now been fi nalized, and the case study is ready for use in

the 2007–08 school year. In this article, I will discuss some of the design decisions behind

GridWorld and give tips for advanced users.

Design Decisions

In this section, I discuss some of the design decisions that were made during the

development of GridWorld. You may disagree with some decisions; some of your colleagues

have done so rather vocally. You may want to discuss the pros and cons of some decisions

with your class.

Actors Store Their Location

Th e MBS case study used an Environment that holds Locatable objects. Th is proved to be

restrictive when writing exam questions. We decided that we wanted a grid that can hold objects

of any type. Th at means that the grid cannot ensure that the grid location and the occupant

location are synchronized—the grid doesn’t know whether its occupants have locations.

We attempted to solve this problem in an ingenious way, by passing the current location to

the act method.

 public void act(Location loc, Grid<E> gr)

Th e actors didn’t have to remember their location; the world reminded them. Unfortunately,

the location and grid ended up being passed into many other helper methods, leading to

tedious code. In the end, we settled for actors that store their location, and supplied the

putSelfInGrid and removeSelfFromGrid methods for synchronizing the actor

and grid locations. As your students will undoubtedly fi nd out, the put and remove

methods of the Grid interface do not work for actors. Th e actors will throw exceptions

when they fi nd that their locations are not properly set.

The Out-Of-Subset instanceof Operator

Th e instanceof operator is not in the AP Java subset, but it is used to sense the type of

actors that are being processed. For example, a bug decides that it can move to a location by

testing

(neighbor == null) || (neighbor instanceof Flower)

The Design of the GridWorld Case Study

8

Special Focus: GridWorld Case Study

Going beyond the AP Java subset for the case study has precedent. Th e MBS case study used

the protected modifi er that is not in the subset. Nevertheless, it is not an ideal situation,

and we explored alternatives. Unfortunately, all of the alternatives required students to write

code that was more cumbersome than the instanceof test. Th ere is no point in making

students learn cumbersome custom code when they could instead learn a Java feature.

Note that we use the instanceof test in its most benign form, without the dreaded cast.

Th at is, we do not have code of the form

if (myActor instanceof Critter)
{
 Critter myCritter = (Critter) myActor; //we don’t do in
 //GridWorld
 . . .
}

Will other GridWorld users exhibit the same good taste and restraint? Only time will tell.

Grid Types are Generic

In the AB course, students look at the Grid interface and the AbstractGrid,

BoundedGrid, and UnboundedGrid classes. Th ey will see implementations of generic

types, even though the implementation of generic types is not currently in the AP Java

subset. In the A course, of course, there is no problem. Students use Grid<E> much like

ArrayList<E>. An old-style Grid that stores Object references requires unsightly

casts. We felt that this advantage outweighed the slight complexity of type variables in the

AB course.

No Direction class

Th e MBS case study had a Direction class for compass directions such as Direction.
NORTH. Th e class had few interesting methods, and we eliminated it to minimize the

number of classes that students see when they encounter GridWorld for the fi rst time. Now

the constants are placed in the Location class, which is admittedly not optimal.

Eight neighbors

A location in the grid has eight neighbors. In contrast, the MBS environment could be

confi gured so that a location had four or eight neighbors, and some people even produced

triangular or hexagonal grids. Th is led to cumbersome exam questions since we always had

to be explicit about the number of neighbors. We decided that hexagonal grids were cute but

not useful enough to pay for the added complexity.

9

No Random Singleton

Naive users oft en try to generate random numbers like this:

 int r = new Random().nextInt(n); // DON’T DO THAT!

However, constructing many random number generators will lead to poorly distributed

random numbers.

Th e MBS case study had its own provider for a singleton random generator. Th at is the right

design if you are serious about controlling random number generation. In the context of

the MBS narrative, it made sense to have repeatable sequences of pseudo-random numbers.

However, the subtleties of random number generation are clearly not a central part of the AP

Computer Science curriculum. In GridWorld, we simply generate random numbers with the call

 int r = (int) (n * Math.random());

You Can’t Save the World

Th e MBS case study had a mechanism for saving and reloading simulation data, in fi les with

contents such as

bounded 7 5
Fish 3 2 North

In GridWorld, that’s a lot harder since grid occupants can be arbitrary objects. I solved the

problem by using the XML fi le format for a specialized Java feature called “long-term beans

persistence.” However, that led to a harder problem. A data fi le can reference an exotic critter

whose implementation is not on the class path. Not to be deterred, I saved a world as a zip

fi le that contains all classes and the data. You could mail your favorite world to someone else,

and the recipient’s GridWorld program would read the classes directly from that fi le, using a

nift y class loader.

Th is was, if I may say so, a technical tour de force. Unfortunately, but perhaps not

surprisingly in hindsight, users did not send world fi les to each other. Th ey were just

confused that there was one set of classes in their project directory and a separate set in the

world fi les. I ended up removing the feature. My heart still bleeds when I think about it.

Actors Are Concrete

Th e act method of the Actor class fl ips the actor, so that you can easily see if you forgot

to override that method. Of course, there would be an even better way of ensuring that the

method has been overridden: to declare it abstract.

The Design of the GridWorld Case Study

10

Special Focus: GridWorld Case Study

Making Actor into an abstract class would clearly be the better design. However, abstract

classes are typically introduced at the end of the A course and reinforced in the AB course.

Th e committee wanted to make it easy to use GridWorld throughout the A course. We

therefore decided to use the conceptually simpler concrete actor class. In the AB course, the

AbstractGrid class gives a good opportunity for studying abstract classes.

Critter Methods Have Restrictive Postconditions

Th e act method of the Critter class calls fi ve other Critter methods.

 public void act()

 {

 if (getGrid() == null)

 return;

 ArrayList<Actor> actors = getActors();

 processActors(actors);

 ArrayList<Location> moveLocs = getMoveLocations();

 Location loc = selectMoveLocation(moveLocs);

 makeMove(loc);

 }

Critter subclasses override one or more of these methods, but not the act method. Ideally,

we would have declared act as f inal. However, the f inal modifi er is not in the AP

Computer Science subset, and we wanted to stay within the subset whenever possible.

When formulating an initial set of potential exam questions, we noticed that we needed

a tool to enforce the “spirit” of the design. We wanted to ask questions about design

alternatives in which one choice is right and the others are wrong. We wanted to signal that

certain implementations are reprehensible, such as eating neighbors in the getActors

method. In order to make clear what is good and bad, we added restrictive postconditions to

the fi ve methods that are called in the act method.

To ensure that the getActors method has no side eff ects, we added a postcondition

“Th e state of all actors is unchanged.” Similarly, we wanted to make sure that the

processActors method makes use of the list of actors passed as a parameter

rather than looking for actors elsewhere. Th is explains the fi rst postcondition of

processActors: “Th e state of all grid occupants other than this critter and the elements

of actors is unchanged. New occupants may be added to empty locations.” Th e second

postcondition “Th e location of this critter is unchanged” makes sure that the critter

movement is carried out by the getMoveLocations/ selectMoveLocation/

makeMove mechanism.

11

Under the Hood

GridWorld was designed to be extensible, so that you can easily go beyond bugs and critters.

In this section, you will see some of the inner workings of GridWorld and learn how to take

advantage of them when you produce your own worlds.

How a World Is Displayed

When the show method of a World<T> is called for the fi rst time, a WorldFrame<T> is

constructed. (WorldFrame is a generic class to minimize unsightly warnings in the code

for the constructor and method menus.) In subsequent calls to show, the frame is repainted.

You will want to call show if you update the grid outside the step method, so that your

changes are displayed.

Th e frame shows a GridPanel that draws the grid (or a portion of the grid if it is too

large), the grid occupants, and the selection square that indicates the currently active cell.

Th e selection square can be moved with the arrow keys or the mouse. Occasionally, you will

want to hide the selection square. Call

System.setProperty("info.gridworld.gui.selection", "hide");

Every GridWorld program in the case study constructs a world, populates it, and then calls

the show method. But you don’t have to call show. When you write a test program, perhaps

for automated grading of your students’ work, you can simply call the step method and

then check whether the grid occupants have acted correctly. For example, to test whether

your students’ ZBug works correctly, place an instance into the grid, call step a number of

times, and then check the grid for a Z-pattern of fl owers.

How Grid Occupants Are Painted

As you know, you can supply GIF images for grid occupants. Simply give the image the

same name as the occupant class, such as MyCritter.gif. Th e image is rotated to the

occupant’s direction and tinted to the occupant’s color. Th e occupant need not be an actor.

Th e info.gridworld.gui.ImageDisplay class simply checks whether there are

methods getDirection and getColor.

You can have multiple images for an occupant. Suppose you want hungry critters to look

diff erent from normal critters. Supply a method getImageSuffi x that returns a string ""

or "_hungry", and supply two images MyCritter.gif and MyCritter_hungry.gif.

Note: (1) One of the images must have the same name as the class, even if you never use

it. (2) Th e getImageSuffi x method must return any separators such as underscores.

(3) Images look best if their size is 48 × 48 pixels. Images are always scaled to a size

The Design of the GridWorld Case Study

12

Special Focus: GridWorld Case Study

12·2n × 12·2n, where n � 0. When a grid is fi rst displayed, n is chosen as the largest value

for which the grid cells fi t in the frame, or 0 if 12 × 12 cells overfl ow the frame. When you

zoom in or out, n is incremented or decremented. Menu icons are scaled to 16 × 16. You can

supply images of other sizes, but they may not look as good.

Sometimes, you may want to achieve more complex drawing eff ects. Supply a class that

extends info.gridworld.gui.AbstractDisplay and whose name is the name

of your occupant, followed by Display, such as MyCritterDisplay. Implement the

following method:

/**

 * Draw the given object. Subclasses should implement this

 * method to draw the occupant facing North in a cell of size

 * (1,1) centered around (0,0) on the drawing surface.

 * (All scaling/rotating has been done beforehand).

 * @param obj the occupant we want to draw

 * @param comp the component on which to draw

 * @param g2 the graphics context

 */

abstract public void draw(Object obj, Component comp,

 Graphics2D g2);

You can use any of the Java AWT drawing calls in the draw method.

You may wonder why the draw method isn’t simply part of the occupant class itself.

However, the drawing code is usually quite complex. For example, the class to draw the MBS

fi sh uses the GeneralPath and GradientPaint classes. By placing the drawing code

in a separate class, you can hide that complex code from students.

13

If there isn’t a display class or a GIF image that matches an occupant class name, the

superclass names are used to fi nd a match. (For that reason, the default drawing of an

Actor subclass is the actor mask.) If none of the superclasses has a display class or GIF

image, then the info.gridworld.gui.DefaultDisplay class is used. Th at class

simply fi lls the cell with a background color and places centered text into the cell. Th e

background color is the value returned by the getColor method, or the value of the object

itself if it is an instance of the Color class. Th e text is the value of the getText method,

or, if there is no such method, the toString method.

Th e default display does the right thing for a World<Color> or World<Integer>.

The Design of the GridWorld Case Study

14

Special Focus: GridWorld Case Study

You can also use the default display for simple game tiles. Defi ne a Tile class with

getColor and getLabel.

Note that invalid grid locations are painted gray. Here is an unbounded triangular grid:

15

How the Buttons Work

When the user clicks the Step button in the GridWorld program, the step method of the

current world is invoked. When you click on the Run button, the step method is invoked

repeatedly, until the Stop button is clicked. Th e frequency depends on the setting of the

Slow/Fast slider.

The Design of the GridWorld Case Study

16

Special Focus: GridWorld Case Study

In the ActorWorld, the step method invokes act on each actor.

In your own programs, you can defi ne the step method diff erently. For example, you can

easily turn GridWorld into a GUI for Conway’s Game of Life. Defi ne the step method to

compute the next generation, then click the Run button to see the simulation unfold.

If you leave the step method undefi ned in your World subclass, then the buttons won’t do

anything.

Note that you don’t have to click the buttons in your own program. You can write a program

that creates a world, invokes step multiple times, and calls show. Th e program simply

displays the fi nal state of the world. Th is is useful for speeding up grading—you can visually

check whether the student’s answer is correct, without having to do any clicking.

How the Message Display Works

Th e yellow area above the grid is the message display. By default, it is blank for ordinary

worlds, and it shows the message “Click on a grid location to construct or manipulate an

actor” for ActorWorld.

You can set your own message by calling the setMessage method. Th is is useful in many

situations. For example, in a game, you can display messages “Player A’s turn” or “Game over”.

Th e message can be arbitrarily long; scroll bars will appear when needed.

Each call to setMessage replaces the preceding message. If you call setMessage(null)

in an ActorWorld, the default message reappears.

How You Can Intercept Mouse Clicks and Keystrokes

Th e World class has student-friendly mechanisms for intercepting mouse clicks and

keystrokes. No knowledge of AWT events is required.

When the user clicks on a grid location, the locationClicked method of the World

is called. By default, that method returns false, which tells the framework to initiate the

default action, namely to move the selection square and to show the constructor or method

menu.

To intercept the mouse click, override the locationClicked method. Carry out any

desired action and return true. Th e grid location on which the user clicked is passed as a

parameter. Typical actions include fl ipping tiles, populating empty locations, and so on.

Sometimes, you need to ask the user for additional information aft er the mouse click. Th e

easiest method is to use a JOptionPane.

17

Let’s consider a common situation. In a game, a user selects a piece. You want to ask where

the user wants to move the piece. You can wait for another mouse click. Th at means,

your locationClicked method needs to keep track of the click state (piece selection

vs. target selection). Or you can enumerate all legal targets and call JOptionPane.
showOptionDialog.

When the user hits a key, the keyPressed method of the World is called. By default,

that method returns false, which tells the framework to initiate the default key action.

If the user hit a cursor key, the selection square is moved. If the user hit the Enter key, the

constructor or method menu is shown. All other keys are ignored.

To intercept the keystroke, override the keyPressed method. Th e method receives the

current location and the keystroke string, encoded in the same format that is used by the

java.awt.KeyStroke class. Example keystroke strings are "INSERT" or "alt
shift X". Your keyPressed method should check the keystroke string. If the string

matches a keystroke that you want to intercept, carry out any desired action and return

true. Return false for all other keystrokes. It is a good idea to return false for the

cursor keys and the Enter key. Otherwise, the standard actions are disabled for your world.

Conclusion

You now know the rationale behind some of the design decisions in GridWorld, and you

have had a peek under the hood of the GUI. I hope you fi nd this information helpful as you

use the GridWorld case study for your Computer Science classes.

The Design of the GridWorld Case Study

18

Special Focus: GridWorld Case Study

Integrating GridWorld

Jill Kaminski

Chaparral High School

Parker, Colorado

Integrating GridWorld

When I fi rst began teaching AP Computer Science, I planned my course around a list of

the AP Java Subset and Topic Outline: if statements, loops, methods, classes, searching,

sorting, case study, etc., etc. I found that using this approach, my students’ brains resembled

shift registers. Th ey could store content during the current unit of study. But they seemed

to “shift ” it out as the next unit began, so that they could store the new information. By

May, my average student had, shall we say, underwhelming retention. My less-than-average

students faired even worse. And this isn’t the kind of test you can cram for.

Several years ago, I began to follow the sage advice of former AP Chief Reader Chris Nevison:

“Don’t teach the case study! Use the case study to teach computer science.” Th is advice also

appears in the prior case study’s teacher’s manual: “Th e case study and the accompanying

teacher’s manual were designed in such a way that you can use these materials throughout

the course. You may, in fact, wish to teach many computer science concepts from the AP CS

curriculum through the case study itself.” What a concept! I revised my course so that the

case study was no longer a unit to be taught, but a tool for teaching a variety of topics.

Th e good news is: it worked! Once my students learned how the case study works, they were

able to learn and apply new concepts within that framework. By May, they remembered the

concepts as well as the case study. Scores improved! Th e people rejoiced!

And the best news of all: I think that GridWorld has even more potential to be used

throughout a course than the prior case studies (particularly an A course). My students

appreciate that this is more of a “real” program, and less like the programs we tend to

write in beginning computer science classes (e.g., Student or BankAccount classes).

It’s well-designed, it’s particularly great for teaching inheritance and data structures, and

the possibilities for its enhancement by students are really exciting.

I usually begin my year-long AP Computer Science A classes by reviewing the basic Java

topics covered in the courses in the pre-AP years. Student activities involve reading, taking

notes, doing free-response practice assignments, doing multiple-choice tests, and writing

programs. I try to save as much time as possible for the programming, because they enjoy

learning by doing, and I fi nd that it’s eff ective. I usually prefer two or so short multiple-choice

tests to one long test at the end of each one to three weeks or at the end of each unit.

I typically begin case study work by November. We go through each Part of the Student

Manual, and at the conclusion of each Part, we reinforce the concepts with extra labs. I

19

present new concepts within the GridWorld context, and much of the subset is covered this

way. And best of all: it’s fun!

Getting Started

You’ll have to roll up your sleeves at some point and do some GridWorld programming.

You’re defi nitely busy, and probably putting it off , but when you do begin, I think you’ll enjoy

it. Read Cay Horstmann’s article about the design of GridWorld. It will help you understand

the behind-the-scenes design and rationale.

If possible, grow to love GridWorld before you present it to your students. Th ey won’t love it

any more than you do. If this is not possible, then act like you love it. Th ey won’t love it any

more than you can act like you do. Do the exercises and labs in the Student Manual, and take

notes as you think of ways that you can enhance them.

Th e case study Student Manual is well-written and engaging. Take advantage of this teaching

tool! It’s a very good textbook for you during these weeks. Th roughout your work in the case

study, talk through the “Do You Know?” sets with the whole class, and have students do all

of the Exercises. Th ese questions and exercises are well designed and valuable.

Part 1

Introduce the case study in a memorable way. As students walk in your room on Day 1 of

GridWorld, let them:

 • see GridWorld running on a projector.

 • see you dressed for the occasion in a festive bug-related t-shirt or tie. Or wear checks or

plaid, to represent the grid.

 • hear some kind of bug music. Here are a few ideas that are available on iTunes

(http://www.apple.com/itunes/):

 º “There Ain’t No Bugs On Me” (traditional)

 º “Bugs.” Mr. Heath

 º “Bugs.” Rosenshontz

 º “Bugs.” Renee Austen

 º “Bugs!” Funky Mama

 º “The Bug.” (aka “Sometimes You’re the Windshield”) Mary Chapin Carpenter, and
also by Dire Straits

 º “The Time of Your Life.” Randy Newman (from A Bug’s Life—the whole soundtrack
is terrifi c)

 º “Flight of the Bumblebee.” Nikolai Rimsky-Korsakov

 º “Antmusic” or “Ant Invasion” Adam and the Ants

Integrating GridWorld

20

Special Focus: GridWorld Case Study

You could integrate bug and/or fl ower decor in your room. Jazz up the computer lab with a

bug-related movie poster: A Bug’s Life, Th e Ant Bully or Antz for fun, or Th em!, Eight-Legged

Freaks, Arachnophobia, or Th e Fly for horror movie fans. You can fi nd “it” on eBay! Consider

an ant farm, or a class pet hermit crab. Perhaps your science department has some creatures

that they can loan you. If these ideas don’t match your personality or style, then think about

other ways to present GridWorld in a positive light.

Explain to your students what a case study is. Th ey probably don’t know. Explain to them

why the College Board wants them to analyze and modify a complex program.

Explain to them that in the “real world,” they’ll likely need to modify code more oft en than

write it from scratch. Explain to them that they’ll be fi red for modifying a class that already

works and didn’t need to be changed!

Click-ability is a welcome addition! Have students experiment with GridWorld using the

table at the end of Part 1, so that they get accustomed to the user interface. Th is will pay

great dividends throughout the course. Take advantage of the BlueJ-like drop-down menus

to enforce the concepts of state and behavior of objects.

Incorporate ideas from Judy Hromcik’s “Early Exercises with GridWorld.” Students’ interest

level skyrockets when they can “do something” to the code, early and oft en. If your students

haven’t studied inheritance at this point yet, GridWorld is a terrifi c tool to present the basic

concepts of “Is-A” and “Has-A,” even in Part 1.

Part 2

Aft er students are familiar with the basic behaviors of the Actors, incorporate role play

activities in which students become Bugs, Flowers, and Rocks. Nonacting students can

give instructions to the actors. You can use a Twister mat as a fun way to represent the grid,

or make a grid on the fl oor with duct tape.

I’m so grateful to Student Manual authors Chris Nevison and Barbara Cloud Wells for

presenting inheritance early! Inheritance allows infi nite creativity in the case study.

Don’t move on to Part 3 without letting students spend some time extending the Bug and/or

BoxBug classes in various ways. Make sure that students understand the good news about

inheritance: you don’t have to start from scratch! Most Bug behaviors do not have to be

rewritten.

As inheritance is explored and new methods are added to subclasses, use the drop-down

menus to illustrate that an object of a subclass has its own unique methods, and also the

methods in the parent class. A class’s methods are displayed in a distinct section of the menu.

21

Th is visual cue is a great reminder that an object has methods from its own class, and also

methods from its parent classes.

In Part 2, show students that they can create any kind of Actor that they’d like. Show them

how easy it is to incorporate their own graphics. If you’re a Marine Biology Simulation fan,

run a demonstration of the Marine Biology Simulation, and have students implement basic

MBS Fish movement in GridWorld. Your favorite MBS labs do not have to collect dust aft er

the 2007 AP Exam! Or have students write GridWorld programs using other characters they

may know and love, like Karel J Robot, Sonic the Hedgehog, or Pac-Man.

Continue to use Judy Hromcik’s ideas as you begin Part 2. Explore Dave Wittry’s Game Of

Fift een and WuZiQi projects from his terrifi c “Board Game Projects” article as you continue

in Part 2. When students realize that GridWorld can be modifi ed to implement a wide

variety of very diff erent projects, they’ll be excited about continuing to work with it, and

their understanding of program design will be greatly enhanced.

Part 3

In this important section of the Student Manual, the inner workings of the case study are

unwrapped for students. Th ey have likely thought of many creative ideas for GridWorld projects.

Now they will learn the information necessary to implement those using solid design practices.

Incorporate some discussion about the GridWorld design into your classes. Review Cay

Horstmann’s rationale, and share some of this with your students. Th ey will appreciate that

the GridWorld designer made the decisions he felt were best, but that he wrestled with some

pros and cons along the way. It will really help them solidify their understanding before they

begin making major changes to the code.

Aft er completing the Jumper project in the Student Manual, let your students design their

own labs! Th ey’ll likely need some guidance in the process, but they’ll have fun while

learning valuable lessons about modifying an existing design. You’ll be amazed at what they

come up with, and they’ll buy in to the assignments.

Part 4

Th e introduction of the Critter class allows the case study to remain fresh. You and your

students will think of even more ideas to implement. Th e sky’s the limit! At this point, I think

that your problem will no longer be “What will I do?” but rather “We don’t have enough time

to do all the fun stuff I’d like to!”

Aft er completing the fun activities in the Student Manual, use Robert Glen Martin’s Ant

Farm. Th en, proceed to Reg Hahne’s Save My Heart labs. Th en try your own ideas, or again,

those of your students.

Integrating GridWorld

22

Special Focus: GridWorld Case Study

Part 5

It is so much fun to teach data structures using a case study like this! Th e pros and cons of

the various structures come to life as students repeatedly extend the AbstractGrid class

in various ways.

In Exercise 1, have students use Java’s LinkedList class fi rst. Th en, make a copy of that

project, and have them create their own LinkedList class using the ListNode class.

None of the client code from their fi rst LinkedList project needs to change aft er the

import of java.util.LinkedList is removed, and when there are problems (most

oft en NullPointerExceptions!), students have to admit that the problem lies in their

LinkedList class. Similarly, students can use the case study as the platform for creating a

binary search tree to represent the grid.

Download and use Dave Wittry’s Generic Data Structures Viewer tool. Th is terrifi c

application, written by Dave’s students, provides students with a visual representation of the

data structures that they create. Th is makes debugging much easier.

And speaking of Dave, defi nitely consider his AB data structure labs (also from “Board

Game Projects.”) Students love writing games, and Dave’s ideas give very interesting and fun

contexts for the study of data structures.

Beyond the Narrative

Continue to use GridWorld as May approaches to reinforce various topics like inheritance,

ArrayLists, recursion, and design. In the process, students will solidify their knowledge

of the topics and the case study itself.

If you didn’t get to all of Dave Wittry’s more advanced A and AB game projects while

studying Parts 3–5, then consider using them aft er you’re fi nished going through the Student

Manual. Dave’s ideas provide a launching pad for many other grid-based game ideas.

Consider Tic-Tac-Toe, Pac-Man, Minesweeper, Hunt the Wumpus, role-playing games, and

games commonly downloaded to programmable calculators. And have fun! Th e best of these

will become project staples for years to come.

Different Strokes for Different Folks

All students are created equal. But not all students are able to perform equally in our classes.

I usually have a high percentage of AP Computer Science students for whom mine is their

only AP course. I encourage their enrollment, and I do my best to help them achieve their

best on the exam (even if that means I help them earn a 2). Th ey will still be better off in

college for the experience of taking an AP course and exam, according to the 2007 Advanced

Placement Report to the Nation.

23

Th e key is successful diff erentiation in our classes. Here are a few ideas pertaining to

GridWorld in particular:

 • Diff erentiate by various forms of assessments. Multiple-choice quizzes on GridWorld

will help prepare students for the AP Exam, and will help improve scores for those who

struggle with multiple-choice questions by giving them more practice.

 • Diff erentiate by presenting their assignments in various forms. Students should not

only read about a programming project but also see it run (on a projector) prior to

attempting it. Th is will help ESL students and those with poor reading skills.

 • Diff erentiate the amount of work within a programming project. Break down the

assignment, and allow credit for the subparts completed. For example, when working

on Robert Glen Martin’s Ant Farm lab, give credit for implementing the QueenAnt

class, and then the WorkerAnt class, and then the Cookie class. Th is way, even if a

student doesn’t complete the entire lab, he or she can still gain learning and grades

along the way. You can also add additional parts to labs for the advanced students.

 • Diff erentiate the number of programming projects. I usually list multiple assignments

within a unit from easiest to hardest. Th e projects at the bottom are not a punishment

for my overachievers, but are designed to provide more fun and challenge to the

advanced students. Th ey generally want to get there! Th is keeps them motivated and

gives me time to work on less-challenging labs with students who need more of my

help. When grading, I assess whether students did their best to complete the highest

number of labs possible, with excellent quality, in the given amount of time.

Closing Thoughts and Ideas (on GridWorld and AP Computer Science
in general)

 • I’ve found that my students will work for food! Th is is an especially eff ective strategy

when I need to give an extended lecture, since they’re happy and they oft en talk less

when their mouths are full. From time to time, try one of the following as a treat:

 • Look for fruit snacks in bug shapes.

 • Get a large container of Chex Party Mix. Th e Chex can represent a grid. Or, add fi sh

objects to the grid, and serve Pepperidge Farm Goldfi sh crackers. Reuse plastic cups

to serve the snacks, and have students write their names on the cups.

 • Get one of the bug-shaped Pez dispensers (Pez Bugz), and reward a kid or two each

day with a little Pez candy. Th ey’ll be much more likely to answer your questions

enthusiastically!

 • Read them On Beyond Bugs! All About Insects by Tish Rabe.

 • Play motivating snippets from movies like A Bug’s Life, Cars, Finding Nemo, Rudy, and

Invincible. Look for the inspiring scenes in which our hero is discouraged and a friend

picks him up, or when he prevails in the end even though the odds were against him.

My favorite is Dory’s “Just keep swimming” speech in Finding Nemo. I tell my students

Integrating GridWorld

24

Special Focus: GridWorld Case Study

to remember this line in the middle of any diffi cult test, when they might be ready to

give up.

 • Change gears if things aren’t working in your class. Abandon your plans, and meet the

kids’ needs. Be fl exible. Hold them accountable, but be realistic in your expectations.

 • Have a donut party for them on the morning of the exam. Let them anxiously ask

you those last-minute questions. Give them your sage advice, like “never leave a

free-response question blank.” Tell them that you’re proud of them. Read them some

inspirational quotes, stories, or poems. Tell them to “Just keep swimming.” Aft er the

exam, tell them that if they want to, they can still be soft ware engineers when they grow

up, no matter what their test score was! Th e experience will have been worthwhile, and

when they take those fi rst college programming courses, they’ll be ahead of the class.

 • Smile. Have fun. You shouldn’t be teaching unless you love it . . . at least, most of the

time!

 • Please consider sharing your GridWorld ideas and successes on the AP Computer

Science Electronic Discussion group and the CSTA Web Repository.

References

Bergin, Joseph, et al. 2005. Karel J Robot: A Gentle Introduction to the Art of Object-Oriented
Programming in Java. Dream Songs Press.

BlueJ. http://www.bluej.org

College Board. 2007. Advanced Placement Report to the Nation.

College Board. AP Computer Science Electronic Discussion Groups. http://apcentral.collegeboard.com

Computer Science Teachers Association. CSTA Source: a Web Repository of K-12 Teaching and
Learning Materials for Computer Science. http://csta.acm.org/Resources/sub/WebRepository.html

Disney/Pixar. 1998. A Bug’s Life. DVD or VHS.

Disney. 2003. Finding Nemo. DVD or VHS. Walt Disney Video.

Disney. 2006. Invincible. DVD. Walt Disney Home Video.

Hunt the Wumpus. Wikipedia. http://en.wikipedia.org/wiki/Hunt_the_Wumpus

iTunes. http://www.apple.com/itunes/

Levine, David, and Steven Andrianoff. 2003. Role Playing In an Object-Oriented World.
St. Bonaventure, New York: St. Bonaventure University, Department of Computer Science.
http://www.cs.sbu.edu/dlevine/RolePlay/roleplay.html

Minesweeper (computer game). Wikipedia.
http://en.wikipedia.org/wiki/Minesweeper_%28game%29

25

Pac-Man. Wikipedia. http://en.wikipedia.org/wiki/Pac-Man

Rabe, Tish. 1999. On Beyond Bugs!: All About Insects. New York: Random House.

Sonic the Hedgehog. Wikipedia. http://en.wikipedia.org/wiki/Sonic_the_Hedgehog

Sony. 1993. Rudy. DVD or VHS.

Tic-Tac-Toe. Wikipedia. http://en.wikipedia.org/wiki/Tic-tac-toe

Twister. Board game. Hasbro.

Wittry, Dave. “Generic Data Structures Viewer” (GDSV). AP Computer Science. Taipei American
School. http://www.apcomputerscience.com/gdsv.index.html

Integrating GridWorld

26

Special Focus: GridWorld Case Study

Early Exercises with GridWorld

Judith Hromcik

Arlington High School

Arlington, Texas

Chapter 1: Observing and Experimenting with GridWorld

Th e GridWorld GUI is an interactive GUI. For each actor that has been placed in the

grid, students can observe the actor’s behavior, test its methods, and learn how it acts by

right-clicking on the actor in the grid and running its methods. Th is unit is designed to

let students explore and discover what functionality the actors possess and how the actors

behave in the grid.

Modifying BugRunner.java

Th e BugRunner class contains a main method that when compiled and executed, runs

the GridWorld GUI. Th e grid is an interactive part of the GUI. Right-clicking on an empty

cell in the grid will allow the user to add a new actor in the grid during the simulation.

Right-clicking on an occupied cell in the grid will allow the user to run methods for that

occupant.

Aft er compiling and running the BugRunner.java, make small changes to the fi le. Th e

original main is shown below:

import info.gridworld.actor.ActorWorld;
import info.gridworld.actor.Bug;
import info.gridworld.actor.Rock;

/**
 * This class runs a world that contains a bug and a rock,
 * added at random locations. Click on empty locations to add
 * additional actors. Click on populated locations to invoke
 * methods on their occupants. To build your own worlds,
 * defi ne your own actors and a runner class. See the
 * BoxBugRunner (in the boxBug folder) for an example. This
 * class is not tested on the AP Computer Science A and AB
 * exams.
 */
1. public class BugRunner
2. {
3. public static void main(String[] args)
4. {
5. ActorWorld world = new ActorWorld();

27

6. world.add(new Bug());
7. world.add(new Rock());
8. world.show();
9. }
10. }

Suggested changes:

1. Comment out line 7, recompile the file and execute.

 a. Before stepping or running the simulation, right-click on an empty cell in the grid.

What types of actors can be added to the grid at this point?

 b. Step or run the simulation. Right-click on an empty cell in the grid. What types of

actors can be added to the grid at this point?

2. Uncomment line 7, recompile the file and execute.

 a. Before stepping or running the simulation, right-click on an empty cell in the grid.

What types of actors can be added to the grid at this point?

 b. Step or run the simulation. Right-click on an empty cell in the grid. What types of

actors can be added to the grid at this point?

Aft er making these changes, students should realize that they can only add the same types of

objects that currently exist in the grid.

Questions

1. The original BugRunner class adds a Bug and a Rock to the grid. Before the

simulation runs one step, you can add a new Bug, Rock, or Actor. Why can an Actor

object be added to the grid when the BugRunner did not add an Actor

(i.e. world.add(new Actor());)?

2. Right-click on every Bug in the grid and run a method that will allow you to move the

bugs out of the grid without a runtime exception. What method(s) did you run? Right-

click on an empty spot in the grid. Can a Bug be added to the grid?

An Actor can be added to the grid if any Actor subclass has been added in the BugRunner

class. Th is is a good time to introduce the idea of inheritance and the idea of IS-A.

 A Bug IS-A Actor
 A Flower IS-A Actor
 A Rock IS-A Actor

When all Bug objects are removed from the grid by using the move or

removeSelfFromGrid methods, new Bug objects can still be added to the grid. Note:

Using the moveTo method to remove any Actor from the grid will cause a runtime

exception to occur.

Early Exercises with GridWorld

28

Special Focus: GridWorld Case Study

Aft er the idea of inheritance has been introduced, right-clicking on a Bug object in the

grid visually shows the students which methods are defi ned by the Bug class (a Bug image

appears by these methods) and which methods the Bug class inherits from the Actor class

(an Actor image appears by these methods).

Exercises

1. Run BugRunner.java. Right click on one of the Bug objects in the grid and do the

following:

 a. list all of the methods that the Bug class defines

 b. list all of the inherited methods from the Actor class that can be called from a Bug

object

 c. draw an inheritance hierarchy diagram for the Bug class, Flower class, and Rock

class

2. List all the cases that will cause the canMove method of a Bug object to return false.

Run the simulation to test your cases.

3. List all the methods that will cause a Bug object to turn.

4. Right-click on a bug in the grid and force it to move to a location that is occupied by a

flower, a rock, an actor, and another bug. What happens if a bug moves into a location

that is occupied by a flower? an actor? a rock? another bug?

Chapter 2: Bug Variations

Chapter 2 of the case study is teaching simple inheritance. Th e code for the Bug class

constructors and the act method is the only code that the students need to really

understand at this point. Students need to only use the canMove, turn and move

methods. In such a constrained space, students can focus on creating a subclass of the Bug

class by modifying the BoxBug class.

General notes for creating Bug subclasses:

When students extend the Bug class

 • they should only override the act method;

 • each call to the move method should be guarded by a call to the canMove method;

 • private instance variables should be added to the subclasses as necessary;

 • new methods for the act method to call can be added to the subclass;

 • constructors for the subclasses should be written to initialize any private instance

variables declared in the subclass;

 • super(); or super(someColor); can be introduced at this time if students

are ready.

29

Additional Beginning Labs for Chapter 2

JumpingBug:

A JumpingBug is a Bug that tries to move two spaces ahead each step. If a JumpingBug

can move, it will move one space ahead and then try to move again. It is possible that it will

only move one space if the second move is not possible. If a JumpingBug does not move at

all, it will turn 90 degrees and change its color to a random color.

Create the JumpingBug class. In writing this class, create a new method, randomColor,

that will return a random color when called.

Th e key to writing the act method for this class is to guard both calls to move with calls to

canMove:

public void act()
{
 if (canMove())
 {
 move();
 if (canMove())
 move();
 }
 else
 {
 turn();
 turn();
 setColor(randomColor());
 }
}

A common mistake for beginning students is to omit the second call to canMove.

Th is lab emphasizes the need to guard all calls to move. It also provides students the

opportunity to create additional methods for the act method to call.

DiagonalBug

A DiagonalBug is a Bug that initially faces northeast, northwest, southeast, or

southwest. When a DiagonalBug cannot move, it turns 180 degrees. Create the

DiagonalBug class.

Early Exercises with GridWorld

30

Special Focus: GridWorld Case Study

In order to solve this problem, students must realize that they will need to write a

constructor for the DiagonalBug and set the initial direction in the constructor. A

random number should be used to determine which one of the four possible directions each

DiagonalBug will face.

Once a correct constructor is written, the act method should be overridden to a make

DiagonalBug turn 180 degrees when it cannot move instead of 90 degrees.

Th is lab emphasizes the need to create a constructor for the subclass and set the proper

initial conditions.

Solutions and student handouts can be found at http://www.apluscompsci.com/material.htm.

Pedagogical Rationale

Prerequisite knowledge for students:

 • compiling and running a Java project

 • creating objects

 • calling an object’s methods

 • making small modifi cations to an existing program

Pedagogical approach: Discovery learning and formative assessment

Discovery learning is “an approach to instruction through which students interact with

their environment—by exploring and manipulating objects, wrestling with questions and

controversies, or performing experiments” (Ormrod, 1995, p. 442).

Th e case study off ers instructors a natural vehicle to employ this pedagogical approach.

Th ese lessons will allow a teacher to actively engage students in the learning process

and ascertain what the students know and understand. Th ese lessons involve classroom

discussion, active questioning, and solving small problems. Th ese are all formative

assessment strategies.

Reference

Ormrod, J. 1995. Educational Psychology: Principles and Applications. Englewood Cliff s,

NJ: Prentice-Hall.

31

Board Game Projects

Dave Wittry

Taipei American School

Taiwan

General Comments and Some Tips for Differentiation

Th e word “game” here is being used, in some cases, liberally. While three of the “games” are

clearly games, two of them are clearly not. I use the term as it will appear to the students.

Th ose games that are not actually “games” are deemed fun by students—so I list them as

“games” as well. You will see what I mean if you use them; they’re fun!

Th ese projects have more to do with learning about the individual classes within GridWorld

(e.g., Grid, World, Location) than with inheritance. Th ese were chosen so that you

could see how one might use GridWorld for things other than Bugs, Actors, Rocks,

and Critters. We all have our favorite labs we’ve used over the years (e.g., NQueens,

Life)—maybe you can start to see how you can still use those ideas but do so within the

context of the case study. One side benefi t of doing so is that you’ll keep your students within

a common metaphor (that of the GridWorld) over the course of many diff erent types of

projects, thereby helping them focus on the specifi c computer science topic at hand and

not distracting them with a context change each time you want to move in a new curricular

direction.

Th e nice thing about all of these projects is that you can use each one in many diff erent ways

depending on what you want to have your students focus on, how much time you have to

dedicate to the individual project, and the current knowledge of your students. Th e labs can

be used in AP Computer Science at either the A or AB level; some can even be used twice

when either revisiting topics or when demonstrating alternate algorithms/data structures at

another point in the course(s). Some tips for how to do so are given and I’m sure you’ll have

a few more ideas along the way. Each of the projects comes complete with a solution as well

as a suggested starting point for students. (See .java fi les within the student version of each

project—see “Materials” section at the end of this document.) You can simply, for example,

delete the body of one method, leaving the students to write it. You pick and choose what

parts of the project you want them to write. Students who need more help might be given

an initial lab setup that has more code fi lled in, for example, than those who need or desire

less assistance. Also, if you have gift ed/talented students in your course, the labs are easily

extensible to help push them and keep interest. Consider working with such students by

giving them some options and asking for their ideas for extension, then let them run with

the ball; you’ll get much more out of them when they get to choose.

Whether or not we have both A and AB level students in one classroom, we oft en need to

diff erentiate, not only among levels but within. Some possible extension ideas that would

Board Game Projects

32

Special Focus: GridWorld Case Study

give the games a more real feel and that apply to all labs below would be to save game state

and reinstate at a later time. Or one could keep game statistics. A very advanced extension

could be to make the game playable over the network while students sit at diff erent

computers. Th ese extensions would teach students, among other things, some of the

following:

 • to use the Scanner class to read/save.

 • to serialize an object so as to simplify saving and reinstating the state of an object, as

well as sending objects over the network connection.

 • to add menu items and buttons, for example, in order to add functionality. Th is would

constitute either inspecting and editing the GridWorld’s GUI fi les and/or creating your

own frame with additional controls. Th e latter option is modeled for you in the Traffi c

Jam lab below.

Th e games chosen in this discussion were chosen for several reasons. First and maybe

foremost, they were chosen because they are a fun way to learn about computer science.

Th ere may be no better way to engage someone than through gaming. Another reason these

projects were chosen is that they demonstrate some of the more captivating features of the

GridWorld package. What color something is or which custom, student-created graphic

is being displayed may not be computer science, but incorporating those simple-to-do

features in your projects will sure go a long way toward keeping your students engaged and

wanting more. Within the context of these fi ve games you’ll see how to accomplish just about

everything you need to know about displaying custom colors, graphics, and text. In addition,

you’ll expose students to the event-driven paradigm with easy-to-handle keyboard/mouse

user-driven events. Along the way they will also learn other typical game constructs such as

how to take turns, pause play, read/save game data, and more. Th ese will open the door to

many other projects. Let the gaming begin!

33

Game of Fifteen

You may have played this game before. Th e game of Fift een is usually played with the

numbers 1 to 15. Here, letters of the alphabet are being used. Th e object of the game is to

rearrange the scrambled letters so that they are in alphabetical, row-major order with the

hole located at the bottom right. Th e only pieces you can “slide” in any turn are those located

horizontally/vertically from the open slot.

Th is is a fantastic lab to use early in the case study in the AP Computer Science A course.

Your students will get lots of practice with the Grid, Location, and World classes.

In addition, they get some good practice with algorithms as they try to fi gure out how to

determine a winner and how to set up a random starting board.

Relevant GridWorld classes and interfaces

World, Grid, BoundedGrid, Location

Relevant topics

tested on AP Exam: nested loops, ArrayList, “for each” loop, Math.random()
not tested on AP Exam: Collections class

Board Game Projects

34

Special Focus: GridWorld Case Study

Code Example

private boolean determineWinner()
{
 Grid<ColorTextPiece> grid = getGrid();
 ArrayList<ColorTextPiece> list = new

ArrayList<ColorTextPiece>();
 for (int row=0; row<grid.getNumRows(); row++)
 for (int col=0; col<grid.getNumCols(); col++)
 list.add(grid.get(new Location(row, col)));
 for (int i=0; i<list.size()-2; i++)
 {
 ColorTextPiece fi rst = list.get(i);
 ColorTextPiece second = list.get(i+1);
 if (fi rst == null || second == null)
 return false; // one of them is the empty cell
 if (fi rst.getText().compareTo(second.getText()) > 0)
 return false;
 }
 return true;
}

If you’re looking for ways to teach arrays within the context of GridWorld, this is the

perfect lab. Students will gain practice with creating a sorted array and “shuffl ing” it in

order to create a random starting arrangement. (Here is where you can incorporate Math.
random() as well.) You can show them Collections.shuffl e() aft er they’re written

their version! Along the way, they’ll also get practice with the “for each” loop, handling

keyboard events, and using the Grid and Location classes while they are inserting and

removing the game pieces from the grid. Th e neat thing is, they’ll be able to write the whole

lab from scratch with just a little bit of guidance. Th is is a short, fun lab.

35

Game of WuZiQi ()

WuZiQi, also known as Gomoku or Gobang, is an ancient, abstract strategy game. An

abstract strategy game is one that has no random elements or hidden information. Other

examples of abstract strategy games include Chess and Checkers. Th e object of WuZiQi is

to get 5 of your pieces in a row either horizontally, vertically, or diagonally. Black moves fi rst

and then play alternates.

Relevant GridWorld classes and interfaces

World, Grid, BoundedGrid, Location

Relevant topics

tested on AP Exam: ArrayList, 2D arrays, writing equals()

not tested on AP Exam: displaying and switching between custom images, taking

 turns mechanism (boolean), event-handling, determining a winner

Board Game Projects

36

Special Focus: GridWorld Case Study

Graphics

For notes on how to dynamically use/swap custom graphics, colors, and text within

GridWorld projects, see the GamePiece class. Th e explanations come with specifi c code

examples and are generalized for any project.

Code Example

public boolean determineWinner(Location loc)
{
 // only need to check 5 in a row from the current loc
 // (last move made)
 int dir = Location.AHEAD, consecutive = 0;
 Location nextLoc;
 Grid<GamePiece> gr = getGrid();
 // There are 4 main diagonals to check for 5-in-a-row.
 GamePiece piecePlayed = gr.get(loc);
 for (int numDiagonals=1; numDiagonals<=4; numDiagonals++)
 {
 nextLoc = loc.getAdjacentLocation(dir);
 consecutive = 1; // current piece played counts as 1 so far
 for (int i=1; i<=2; i++)
 {
 while (gr.isValid(nextLoc)
 && gr.get(nextLoc).equals(piecePlayed))
 {
 consecutive++;
 nextLoc = nextLoc.getAdjacentLocation(dir);
 }
 dir += Location.HALF_CIRCLE;
 nextLoc = loc.getAdjacentLocation(dir);
 }
 if (consecutive >= 5) return true; // we have a winner
 dir += Location.HALF_CIRCLE; // back to starting diagonal
 // direction
 dir += Location.HALF_RIGHT; // turn to the next diagonal
 }
 return false;
}

Th is method alone will give students excellent practice with the Location class. It can

be written in O(1) in terms of N, where N is the number of pieces played so far. Th is gives

you a nice way to challenge your AB students if you wish, and leads to a nice, yet optional,

discussion with the A students depending on the various solutions they code.

37

Escape from a Maze

Th is is your typical escape-from-a-maze lab. You click in an empty cell and then the

algorithm takes over, fi nding its way “out” (to the edge of the grid).

In addition, if you’re looking to teach I/O, this is a great place to do it. Th is lab shows

you how to create a text fi le with maze data, read it, and use it to build the initial starting

world/grid.

Relevant GridWorld classes and interfaces

World, Grid, Location

Board Game Projects

38

Special Focus: GridWorld Case Study

Relevant topics

tested on AP Exam: nested loops, recursion, Stack, ArrayList, “for each” loop

not tested on AP Exam : Scanner class (fi le i/o)

Code Example

private boolean escape(Location loc)
{
 Grid<Tile> gr = getGrid();
 ArrayList<Location> nbrs = gr.getEmptyAdjacentLocations(loc);
 if (nbrs.size() == 0) return false;
 Stack<Location> stk = new Stack<Location>();
 Location aLoc;
 for (Location tmpLoc: nbrs)
 stk.push(tmpLoc);
 while (!stk.isEmpty())
 {
 aLoc = stk.pop();
 if (onBorder(aLoc, gr.getNumRows(), gr.getNumCols()))
 {
 add(aLoc, new Tile(Color.RED, "escaped"));
 return true; // found a way out, we’re done
 }
 else
 {
 add(aLoc, new Tile(Color.RED));
 nbrs = gr.getEmptyAdjacentLocations(aLoc);
 for (Location tmpLoc: nbrs)
 stk.push(tmpLoc);
 }
 pause("searching...");
 }
 return false;
}

While this might more elegantly be written using recursion (sample recursive solution in the

project fi les), this would be a good lab to use early on when teaching stacks. Students will be

able to watch the cells being visited (a pause is built in). You can have discussions about how

subtle changes in the code will lead to certain pathways being attempted before others. You

can have students try to predict what will happen. Th is lab could be used at the A level when

teaching recursion; then you can revisit it in your AB course. Another suggestion might be

to have the teacher use this lab as a demo in class and then assign MagicWandWorld.

39

MagicWandWorld

MagicWandWorld is based on the paint can tool found in many graphic editing programs.

You fi rst select a cell (color) with the “eye dropper” and from then on, anything you click

will turn that color, along with all adjoining cells of the same color. So, for example, if you

touch a light gray cell when you begin and then you go and touch the dark gray cell in the

upper-left corner, the dark gray cell and its four blue neighbors will all turn light gray. It’s a

simple idea—and the kids love it. When things go wrong with their recursive solutions, they

immediately know—and oft en laugh. On their fi rst attempt, for example, students might end

up turning the whole grid light gray with one click—that always gets a good laugh from a

neighbor.

Board Game Projects

40

Special Focus: GridWorld Case Study

Relevant GridWorld classes and interfaces

 World, Grid, Location

Relevant topics

 tested on AP Exam: recursion, Stack, array, nested loops, “for each” loop,

Math.random()
 not tested on AP Exam: event-handling

Code Example

/*
 * This is the recursive method that does the changing of the

colors.
 */
public void changeColors(Location loc, Color col)
{
 Grid<Tile> gr = getGrid();
 if (! gr.get(loc).getColor().equals(col))
 return;
 gr.put(loc, new Tile(startingColor));
 ArrayList<Location> nbrs =

 gr.getOccupiedAdjacentLocations(loc);
 for (Location aLoc: nbrs)
 changeColors(aLoc, col);
}

Th is is a real good lab to use early on when teaching recursion. Th e solution is short and

manageable, not to mention fun (and it doesn’t have anything to do with factorials or

Fibonacci numbers! J). You might then choose to revisit the lab when you are teaching the

AB level, having students, instead, write the solution using a stack. Th is is a nice way to give

application to your discussion of the relationship between recursion and a stack.

41

Traffi c Jam

Traffi c Jam is a game based on Rush Hour by Nob Yoshigahara. Th e goal of the game is

simple. Move the arrows around until you can get the red arrow over to the right wall.

Th is lab is nice for the AB level because one possible way to implement the arrows

needing to be stored in the grid is to extend the BoundedGrid class. Th e new class

(MultiCellBoundedGrid) contains a private Map that holds objects of type Arrow.

Each arrow then knows about itself and how many cells it takes up. When adding objects

to MultiCellBoundedGrid, the new implementation takes advantage of inheritance,

storing all individual pieces of the arrows in the BoundedGrid.

Th is working version provides you with 40 game situations. Students learn to read from a

text fi le to load the games. Th ey use the keyboard to choose between games and then the

mouse to start moving arrows. As soon as they start, a JFrame pops open and starts timing

Board Game Projects

42

Special Focus: GridWorld Case Study

them, introducing them to threads, one simple GUI component, and some basic Graphics

methods. If you don’t like to spend a lot of time teaching GUI, this model works as a nice

teaser for those students who need diff erentiation and desire more depth.

Relevant GridWorld classes and interfaces

 World, Grid, BoundedGrid, Location

Relevant topics

tested on AP Exam: inheritance (extending BoundedGrid), nested loops,

ArrayList, Map, “for each” loop

not tested on AP Exam: Scanner, StringTokenizer, JFrame, Thread

Code Example

public class MultiCellBoundedGrid extends BoundedGrid<Piece>
{
 //Map holds “arrows” that take up multiple BoundedGrid

//locations
 private Map<Location, Blockable> blocks;
 public Blockable putBlock(Location loc, Blockable blk)
 {
 Blockable oldBlk = blocks.remove(loc);
 blocks.put(loc, blk);
 // now put individual parts/pieces of Block into

// BoundedGrid
 for (Piece p: blk.getCells())
 if (isValid(p.getLocation()))
 put(p.getLocation(), p);
 else
 throw new IllegalArgumentException(
 “illegal Block location being put”);
 return oldBlk;
 }

 public void clearGrid()
 {
 for (Location loc: getOccupiedLocations())
 remove(loc);
 blocks = new HashMap<Location, Blockable>();
 }
 // other methods and constructors not shown
}

43

Th is project is very involved. It is suggested as a fi nal project. Just as with the other labs,

however, you can give students a working version with just a few methods needing to be

fi nished. If you want to have students design their own “Arrows,” this lab shows you how the

GridWorld GUI works with images, rotating, and coloring.

Th e code example above gives you a small idea of how the MultiCellBoundedGrid

works by extending BoundedGrid. Th e MultiCellBoundedGrid has a private Map

which holds the “arrows” (Blockable). BoundedGrid was extended so that it could

hold the individual pieces of each arrow.

Reference

Yoshigahara, Nob. Rush Hour (board game.)

 http://www.thinkfun.com/RUSHHOUR.ASPX?PageNo=RUSHHOUR.

Materials

Th e annotated code solutions and suggestions for these projects and more related to

GridWorld may be found at: www.apcomputerscience.com/gridworld

 user: apteacher

 password: specialfocus

Board Game Projects

44

Special Focus: GridWorld Case Study

Ant Farm Project

Robert Glen Martin

School for the Talented and Gift ed

Dallas, Texas

Introduction

Th is is a detailed overview of Ant Farm, a GridWorld programming project that is

appropriate for students taking AP Computer Science A or AB. Teachers can download the

student assignment, starter fi les, and a written follow-up assignment. Th e completed project

and follow-up assignment key are included for teachers. More details about the download

are included at the end of this document.

As students complete the Ant Farm project, they write an interface and both concrete and

abstract classes. Th ey demonstrate inheritance, encapsulation, and polymorphism. Prior to

beginning the Ant Farm project, students must read and understand the fi rst four chapters of

the GridWorld narrative.

Overview

Figure 1—Ant Farm (Initial State)—Worker ants hunt for food.

45

Ant Farm Project

Th e project utilizes four new types of objects (see Figure 1), two kinds of food

(A - Cookie and B - Cake) and two kinds of ants (C - WorkerAnt and D - QueenAnt).

Originally, the worker ants walk around in search of food. When they fi nd food, they take a

bite. Ants with food turn red. Th en the worker ants go in search of a queen ant to give food.

Once they give their food to a queen, they turn black and go back to get more food.

Food and queens remain stationary. Worker ants remember the locations of food and the

queen. Additionally, they share those locations with other worker ants they meet.

When the Ant Farm program starts, the worker ants are spread around the grid in random

locations. Initially, they are disorganized as they search for food. As the worker ants start to

fi nd food and the queen, they get more organized (see Figure 2). Aft er all the ants learn the

locations, they exhibit an emergent behavior that is very organized (see Figure 3).

Figure 2—Intermediate State—worker ants start learning

locations of food & queen.

Figure 3—Final State—worker ants know locations of

food & queen.

46

Special Focus: GridWorld Case Study

Program Organization

Figure 4—Ant Farm Classes

Figure 4 shows the organization of the Ant Farm classes and interface.

GridWorld has a “built-in” Actor class for objects that “live” in the grid. Actors that have

minimal interaction with other objects in the grid normally inherit from Actor. Th is is

appropriate for QueenAnt and Food. Cake, and Cookie also inherit indirectly from
Actor.

Th e other “built-in” actor is Critter, which inherits from Actor. Critters have

additional methods that are useful for interacting with other actors. WorkerAnts need to

“communicate” with the QueenAnt, Cake, Cookie, and other WorkerAnt objects, so

inheriting from AntFarmCritter is appropriate for them.

Ant Farm also has a new Processable interface. Th is interface has a single process

method that is the key to communication between worker ants and the other actors.

Now we’ll discuss each of the new classes and interface.

47

Ant Farm Project

Processable Interface

Figure 5—Processable Interface

Figure 5 shows the complete Processable interface. It contains a single public abstract

process method. Note that all interface methods are automatically public and abstract.

When implemented in QueenAnt, Food, and WorkerAnt, this method processes

(communicates with) a single WorkerAnt object (the one passed as a parameter). Th is

interface allows worker ants to invoke the other actor’s process methods polymorphically.

Th e individual process methods will do the following:

• QueenAnt

 º Get food from the worker ant.

 º Give the queen’s location to the worker ant.

• Food

 º Give food to the worker ant.

 º Give the food’s location to the worker ant.

• WorkerAnt

 º Give the saved food location to the other worker ant.

 º Give the save queen location to the other worker ant.

Note that Ant Farm uses the Processable interface to implement an interface variant of

the Template Design Pattern. Th e Template Design Pattern normally uses an abstract class to

contain the abstract method(s). Th en concrete classes (which inherit from the abstract class)

implement the method(s) as appropriate. In Ant Farm, we use the Processable interface

to hold the abstract process method. process methods are written in the QueenAnt,

Food, and WorkerAnt classes, each of which implement Processable.

48

Special Focus: GridWorld Case Study

QueenAnt Class

Figure 6—Queen Ant class

Figure 6 shows the QueenAnt class. Queen ants are the simplest of the new Ant Farm

objects.

Th e QueenAnt class has one new instance variable (foodQuantity) that is used to

contain the total amount of food that has been given to the queen by the worker ants. Note

that instance variables in Ant Farm, are made private to preserve encapsulation.

Th e QueenAnt class has a constructor that initializes foodQuantity to 0 and uses the

inherited setColor method to set the queen’s color to Color.MAGENTA.

QueenAnt implements the process method (from Processable) to get food from

the passed worker ant and to provide it the queen’s location. It overrides the Actor act

method with an empty “do nothing” method (QueenAnts don’t act).

49

Ant Farm Project

It also overrides the Actor toString method to add additional information to the

returned string.

Th is provides a good example of using super to call a super class method:

 return

 super.toString() +

 ", FQty=" + foodQuantity;

Food, Cake, and Cookie Classes

Figure 7—Food,Cake, and Cookie Classes

50

Special Focus: GridWorld Case Study

Figure 7 shows the Food, Cake, and Cookie classes. Cake and cookie objects act

similarly to queens. However, instead of getting food, they give food.

Diff erent kinds of food are very similar. Th ey diff er only by the size of a bite and the

displayed image. To take advantage of this similarity, the common instance data and

methods are placed in a Food super class. Th is class contains no abstract methods, but it is

declared abstract so that it can not be instantiated. Food contains two instance variables:

 • BITE_SIZE—a constant that determines how much food is given to a worker ant

when it gets food.

 • foodEaten—keeps track of the total amount of food “given” to worker ants.

Th e constructor initializes BITE_SIZE to the bite value passed in the parameter,

initializes foodEaten to 0, and calls setColor(null) so that the Cake.gif and Cookie.

gif images display with their original coloring.

Food implements the process method (from Processable) to give food to the passed

worker ant and to provide it the food’s location. It overrides the Actor act method with an

empty “do nothing” method (Foods don’t act).

It also overrides the toString method to include the BITE_SIZE and foodEaten

information.

Because of the Food class, the Cake and Cookie classes are very simple. Th ey contain a

single class constant BITE which contains the size of a bite. Th ey each have a one statement

constructor which passes the value of BITE to the Food constructor—super(BITE);

51

Ant Farm Project

WorkerAnt Class

Figure 8—WorkerAnt class

52

Special Focus: GridWorld Case Study

WorkerAnt (Figure 8) is the most complex Ant Farm class. Th is is to be expected, since it

is aCritter that interacts with the other objects in the grid.

Worker ants have instance variables to keep track of the amount of food they currently have

as well as the locations of the food and the queen.

Th e constructor initializes these instance variables, makes the ant black, and uses Math.
random to randomly point the ant in one of the eight valid compass directions.

WorkerAnt implements the process method to share queen and food locations with

other worker ants. WorkerAnt has four methods that do the “processing.” Th ey are

takeFood, giveFood, shareFoodLocation, and shareQueenLocation.

Th ese methods are called from the process methods of the QueenAnt, Food, and

WorkerAnt classes.

Th e Critter act method calls the following methods in order:

1. getActors—gets a list of actors for interaction.

2. processActors—interacts with the list of actors.

3. getMoveLocations—gets a list of possible locations for moving.

4. selectMoveLocation—chooses one of the possible move locations.

5. makeMove—moves.

Worker ants inherit the Critter act method, which does the following:

1. Uses the inherited getActors to get all the adjacent neighboring actors.

2. processActors processes each of the neighboring ant farm actors. This method is a

model of elegance and conciseness. The entire method is

 for (Actor actor : actors)
 {
 Processable processor = (Processable)actor;
 processor.process(this);
 }

An actor could be a QueenAnt, a Cake, a Cookie, or a WorkerAnt. Without

the Processable interface, processActors would need to determine the type of

actor and then downcast the actor reference before making the call to process.

But, since each of these classes implements Processable, processActors

only needs to cast the actor to Processable before the call. Th is polymorphic

processing is allowed because Processable contains the process method. Th e Java

Run Time Environment (JRE) determines the actual type of object at runtime and calls

the appropriate process method.

53

Ant Farm Project

Also note the use of the this reference. this is a reference to the worker ant executing the

processActors method, which is exactly the ant that needs to be passed to process.

3. getMoveLocations does the following:

 a. Calls the private getDesiredDirecton method to get the general direction the
ant wants to move. This is determined as follows. If

 i. the ant wants food and knows where the food is, then the direction is towards the
food.

 ii. the ant has food and knows where the queen is, then the direction is towards the
queen.

 iii. neither of the above, then the direction is the ant’s current direction.

 b. Creates a list with up to three of the adjacent locations that are in the general direction
of the one returned by getDesiredDirection. Locations are included if they
meet all of the following criteria. They must be:

 i. Adjacent to the current location.

 ii. In the desired direction or 45 degrees to the left and right of the desired
direction.

 iii. Valid.

 iv. Empty.

 c. Returns the list of locations.

4. Uses the inherited selectMoveLocation to randomly select one of the possible

locations. If the list of possible locations is empty, it returns the current location.

5. If the selected move location is different from the current location, makeMove moves

to the selected location. Otherwise it stays put and changes its direction by randomly

choosing between the two directions 45 degrees to the left and right. Then, in either

case, it sets its color based on whether it has food (red) or not (black).

WorkerAnt also overrides toString to include the values of its instance variables.

AntFarmRunner

Like all GridWorld projects, Ant Farm has a “runner” application that is used to set up the

initial confi guration and show the GUI. AntFarmRunner diff ers from the introductory

examples in that it creates its own grid and uses the one parameter ActorWorld

constructor so that the world will use it.

Modifi cations

Th e Ant Farm project is complete. But it can be modifi ed in several ways. Here are a few

ideas:

54

Special Focus: GridWorld Case Study

Split Assignment

Since this assignment contains new classes that inherit from both Actor and

AntFarmCritter, it can be split into two assignments. Aft er students read chapter 3

of the GridWorld Narrative, they could be given a revised starter project that includes a

working WorkerAnt.class fi le (but no WorkerAnt.java). Th is revised assignment

would have students implementing AntFarmRunner, Processable, QueenAnt,

Food, Cake, and Cookie.

Later, aft er completing chapter 4 of the GridWorld Narrative, students could write

WorkerAnt to complete the project.

A-level Enhancements:

1. Add additional foods. Each of them would extend Food.

2. Currently the worker ants and the queen ants don’t need the food to survive. The project

could be changed so that they use up the food over time and die if they don’t receive

enough.

3. Currently the food is never totally consumed. Each food could start with an initial

number of bites and could “go away” when totally consumed.

4. Additional food objects could be created as the simulation progresses. This would require

creating a new world which extends ActorWorld and overrides the step method.

AB-level Enhancements

1. Currently worker ants vary their directions a little and can navigate around other ants

and small obstacles such as rocks. However, they are unable to get around a “wall” of

obstacles that would require them taking a longer path.

 Worker ants could be extended to do a breadth-first search for the shortest possible path

to the food or queen.

2. Another method of navigating around obstacles would be to use “maps” which would

indicate the number of steps required to get to food or a queen. These maps could be

created by breadth-first searches initiated in AntFarmRunner.

Summary

Ant Farm is a GridWorld project that is appropriate for both A and AB students. As students

complete the project, they demonstrate their understanding of the fi rst four chapters of the

GridWorld Narrative.

Th is project utilizes both types of actors. Students inherit from Actor for Food and

QueenAnt. Students inherit from Critter for WorkerAnt, an actor that interacts with

the other actors.

55

Ant Farm Project

As students complete the Ant Farm project, they write an interface, an abstract class, and

several concrete classes. Th ey demonstrate inheritance, encapsulation, and polymorphism.

Th e polymorphism is facilitated by the is-a relationships created by both class inheritance

and interface implementation.

Download

Th e assignment and starter project can be obtained from http://www.martin.

apluscomputerscience.com/gridworld.html. Since this download contains the teacher

solution and key, its access is restricted to teachers only (Password—abbott). Please do not

share the URL or password with students. Th e following fi les are included:

 • Student Files

 º AntFarm Assignment.doc—the assignment

 º AntFarm Student.zip—the starter fi les (JCreator project)

 º AntFarm Follow-up Questions—questions about the important OOP and GridWorld

concepts demonstrated in the Ant Farm project.

 • Teacher Files

 º AntFarm Teacher.zip—the completed project

 º AntFarm Follow-up Questions KEY

Reference

As students execute the Ant Farm project, they see an emergent behavior exhibited by the

worker ants. Teachers and students may want to explore emergence further at the following

URL:

“Emergence.” Wikipedia. http://en.wikipedia.org/wiki/Emergence

Ant Farm uses an Interface variant of the Template Design Pattern. Th is can be explored at:

 http://en.wikipedia.org/wiki/Template_method_pattern

Special Thanks

I would like to thank

 • Cay Horstmann for his helpful design suggestions.

 • Chris Renard, one of my students at the School for the Talented and Gift ed, for creating

the images used in Ant Farm.

56

Special Focus: GridWorld Case Study

Save My Heart

Reg Hahne

Marriotts Ridge High School

Marriottsville, Maryland

Th is assignment involves the development of a computer simulation that builds from the

simple to the complex. As each level of the simulation is implemented, the Actors become

more sophisticated in the ways in which they act.

Th e Actors in this simulation are

 Heart—has the same characteristics as a Rock. It is a stationary item.

 Bacteria—Th is Actor selects the shortest path to the Heart.

 WhiteBloodCellCritter—interrupts the direct movement of the Bacteria to the

 Heart.

Level 0

Th e simulation at Level 0 contains two Actors: a Heart and a Bacteria.
Th e Bacteria’s goal is to infect the Heart by taking the shortest possible path to the

Heart. Th e simulation ends when the Bacteria lands on a cell that is adjacent to the
Heart, making the heart turn to the color BLACK. Once the Heart turns BLACK, the
act method has completed its mission and the simulation ends.

 Bacteria—Knows the position of the Heart and moves in the

 shortest possible path towards the Heart.

 Heart—Does not move, but turns BLACK once the Bacteria is in

 an adjacent cell.

Th ere are two main classes you will need to develop at this level of the simulation; the
Heart and the Bacteria. Let’s focus on the Heart. Th e Heart extends Actor in

a similar way that Rock extends Actor. As the heart is a stationary object, its coding is

similar to that of a Rock.

Items for consideration

1. Change of color of the Heart to BLACK once it has been infected by the Bacteria.

2. Use only one constructor (default) as the Heart’s color will always be RED at initial

runtime.

Graph 0.1 shows initial location of the Heart and Bacteria prior to run. Graph 0.2

shows the location of the Bacteria aft er several moves towards the Heart. Graph 0.3

shows termination.

57

Graph 0.1

Graph 0.2 Graph 0.3

Save My Heart

58

Special Focus: GridWorld Case Study

Once the Bacteria has come in contact with the Heart, the Heart changes to

BLACK, and the simulation ends.

Bacteria is our next responsibility. All Actors act, and Bacteria is an Actor,

therefore the following will be encapsulated within Bacteria’s act method. Finding

the location of the Heart for the Bacteria to attack and checking if the Bacteria

has moved to a location adjacent to the Heart, terminating the simulation and turning the
Heart BLACK will all be necessary.

Items for consideration

1. Set the constructor to use a different “bacteria” color.

2. Find the location of the Heart.

3. Obtain locations around the Heart that could terminate the simulation.

4. How to move toward the Heart.

5. Termination.

A suggested algorithm:

 public void act()

 {

 // fi nd Heart location

 // making sure it’s not null

 // get termination locations; those locations

 // surrounding the Heart

 // if (Heart not found) //not terminating

 // set direction of the Bacteria

 // make move toward the Heart

 // else // terminated condition

 // change Heart to the color BLACK

 }

Th e Bacteria constructor should be simple to write. Because Bacteria is an Actor,

its constructor can invoke the Actor’s setColor method, changing the color of the
Bacteria to BLUE.

To fi nd the location of the Heart you will need to create a method getHeartLocation
that returns its location.

 public Location getHeartLocation()

59

To do this you need to scan the entire grid creating a list of objects inhabiting locations. One

way to do this is shown below:

 int col, row = 0;
 Location loc = null;
 boolean found = false;
 while (row < getGrid().getNumRows() && !found)
 {
 col = 0;
 while (col < getGrid().getNumCols() && !found)
 {
 loc = new Location (row, col);
 Actor a = getGrid().get(loc);
 if (a != null && a instanceof Heart)
 {
 found = true;
 }
 col++;
 }
 row++;
 }
 return loc;

However, code such as this defeats the purpose of encapsulation and top-down design. You

should consider utilizing the Grid interface’s method getOccupiedLocations
which allows you to acquire all the objects in the Grid. Th en, use an enhanced for
loop to traverse the array of objects, checking for a Heart.

 for (Location loc : inhabitedLocations)
 {
 // check if loc is a Heart
 }

Of course, if the Heart is not found then return null.

Once the Heart has been located, you need to acquire a collection of locations that

surround the Heart (possibly eight in total). Create a list that will hold all the valid locations

that are adjacent to the Heart. Once established, check to see if the Bacteria is in one of

these locations. If it is, the Heart is set to BLACK and the act method is terminated.

 public boolean checkForTermination
 (ArrayList<Location> terminationLocations,
 Location BacteriaLocation)

Save My Heart

60

Special Focus: GridWorld Case Study

If the result of the test is false then the Bacteria will change direction toward the

current location of the Heart and move one space forward. Th is will continue until the

Bacteria is adjacent to the Heart.

Questions to Ponder

1. Why does the simulation cease when a Bacteria is in a cell adjacent to the Heart?

2. What other classes need to be imported?

3. Why is it a good idea to set the direction of an Actor before making it move?

4. Change program cessation from being “in a location next to the Heart” to being “in a

location the same as the Heart,” in fact, removing the Heart. List the programming

changes that need to be made, and then code your solution.

61

Level 1

Th e simulation at Level 1 contains three Actors: a Heart, a Bacteria and a

WhiteBloodCellCritter.

Th e Bacteria’s goal is to infect the Heart by taking the shortest possible path to

the Heart. Th e simulation ends (Heart turns BLACK) when the Bacteria lands

on a cell that is adjacent to the Heart. Th is is similar to the situation for termination in

Level 0. An additional skill that the Bacteria possesses is an ability to become aware of

a WhiteBloodCellCritter and change direction.

 WhiteBloodCellCritter—Moves randomly within a two cell range within a 5 × 5 cell

 grid with the Heart at its center.

 Bacteria—Knows the position of the Heart and moves in the

 shortest possible path towards it. In addition, the Bacteria can “see” two

grid blocks in any direction from its current position. If the Bacteria
is within two grid blocks of the WhiteBloodCellCritter, the
Bacteria moves one grid block in the opposite direction from the

location of the WhiteBloodCellCritter.

 Heart—Does not move, but turns BLACK once the Bacteria is in

 an adjacent cell (as in Level 0).

Below are several phases of a graphical simulation demonstrating how the Bacteria and
WhiteBloodCellCritter interact.

Graph 1.1 Graph 1.2

Save My Heart

62

Special Focus: GridWorld Case Study

Graph 1.3 Graph 1.4

Graph 1.5 Graph 1.6

63

Graph 1.1 shows initial location of the Heart, Bacteria, and
WhiteBloodCellCritter prior to run. Graph 1.2 shows the location of the Heart,
Bacteria and WhiteBloodCellCritter aft er two steps of the simulation. Aft er

many steps of the simulation Graph 1.3 shows the location of the Heart, Bacteria
and WhiteBloodCellCritter. Th e resolution of this encounter is shown in Graph 1.4

and then Graph 1.5. Graph 1.6 shows termination.

Items for consideration

Th ere are three main classes to consider at this level of the simulation:

1. The Heart will not change location.

2. A new class, WhiteBloodCellCritter, needs to be created.

3. The Bacteria will need to be modified to consider the position of the

WhiteBloodCellCritter.

Let’s look at the creation of the WhiteBloodCellCritter class.

A WhiteBloodCellCritter will be able to move within a 5 × 5 cell grid around

the Heart. Graph 1.7 and Graph 1.8 show possible WhiteBloodCellCritter’s

realm of movement.

Graph 1.7 Graph 1.8

Save My Heart

64

Special Focus: GridWorld Case Study

Because a WhiteBloodCellCritter is a Critter, its movement should be

implemented by overriding the methods that are called by Critter’s act method.

Remember the act method of the Critter class calls fi ve other methods.

 public void act()
 {
 if (getGrid() == null)
 return;
 ArrayList<Actor> actors = getActors();
 processActors(actors);
 ArrayList<Location> moveLocs = getMoveLocations();
 Location loc = selectMoveLocation(moveLocs);
 makeMove(loc);
 }

Th e WhiteBloodCellCritter constructor should be simple. Because

WhiteBloodCellCritter is a Critter and Critter is an Actor,
the constructor can invoke the Actor’s setColor method, setting the color of a
WhiteBloodCellCritter to YELLOW.

Th e getActors and processActors methods are implemented to do nothing.

Th e most challenging method to write is getMoveLocations. Th is method returns an
ArrayList of possible locations that the WhiteBloodCellCritter can legally

move. Remember the restrictions placed upon the WhiteBloodCellCritter. Below is

the method header and pseudo-code outlining a possible process.

 public ArrayList<Location> getMoveLocations()
 {
 // get the empty adjacent cells
 // remove locations that are outside its realm
 // return the list
 }

To obtain the empty locations, create an ArrayList of possible moves using the
getEmptyAdjacentLocations method found in AbstractGrid. Once obtained,

you will need to remove all the invalid locations. Method removeInvalidLocations
outlines an implementation plan.

 public ArrayList<Location> removeInvalidLocations
 (ArrayList<Location> locations)
 {
 // make a new ArrayList
 // place only valid items in this list
 // need to check if locations are valid
 }

65

Th is plan needs to remove locations that are outside of the realm of the
WhiteBloodCellCritter’s movement. To do this requires the return of an
ArrayList of valid locations. Th ese valid locations depend on the location of the
Heart. By using the getHeartLocation method from the Bacteria class, we will

be able to process the current ArrayList, removing additional invalid locations and

returning a list of possible valid locations to which the WhiteBloodCellCritter can

move. To accomplish this task a method withinHeartRange needs to be developed.

 public boolean withinHeartRange(Location loc,
 Location heartLocation)
 {
 // returns true if loc is within a valid distance of
 // the location of the Heart
 }

Once getMoveLocations has returned the ArrayList of possible valid moves, the

Critter’s selectMoveLocation and makeMove methods will be called.

Now you need to address the Bacteria and the new actions that it takes in relation

to the location of the WhiteBloodCellCritter. Th ere are several methods that the

current Bacteria have, and some additional methods to write. It would be prudent to

inherit all the current Bacteria methods and create a new class Bacteria1 that
extends Bacteria.

 public class Bacteria1 extends Bacteria

Items for consideration

1. Set the constructor to use a different “bacteria1” color.

2. Find the location of the Heart and WhiteBloodCellCritter.

3. Check to see if close to a WhiteBloodCellCritter.

4. Set reverse direction.

5. Move like a Bacteria.

Th e Bacteria1 constructor should be simple. Because Bacteria1 is a Bacteria
you can invoke the Bacteria constructor by using super to call the parent class’s

constructor. Make sure you pass the color GREEN as a parameter in this call.

As before, the act method needs to be modifi ed to accommodate these new requirements.

Th is modifi cation requires you to redesign Level 0 of the act method. Use the following

steps in the redesign of your new act method.

 public void act()
 {
 // fi nd Heart and WhiteBloodCellCritter locations
 // make sure neither is null

Save My Heart

66

Special Focus: GridWorld Case Study

 // check to see if close to a white blood cell
 // if so next move is retreat
 // move in the reverse direction
 // else next move is attack
 // move in the direction of the Heart
 // but check for termination
 }

Create the getWhiteBloodCellLocation method by mimicking the
getHeartLocation method found in the Bacteria class.

As you know, when a Bacteria1 discovers the existence of a

WhiteBloodCellCritter, it moves in the opposite direction from

the WhiteBloodCellCritter. To facilitate the discovery of the
WhiteBloodCellCritter, the method closeToWhiteBloodCell needs to be

created. Use the following header for this method:

 public boolean closeToWhiteBloodCell()
 {
 // get the white blood cell location
 // return true if detected a white blood cell
 // else return false
 }

To help detect a WhiteBloodCellCritter you will need to write the method
getValidLocations that will return an ArrayList of valid locations that the
Bacteria1 can search.

public ArrayList<Location> getValidLocations(Location bacteria)

Remember this area is a 5 × 5 cell grid surrounding the Bacteria1. Th ose valid

locations need to be compared to the location of the WhiteBloodCellCritter and

if within range move accordingly. Th is movement is in the reverse direction away from the
WhiteBloodCellCritter. If no contact with a WhiteBloodCellCritter is

discovered to be true, then the Bacteria1 moves like a regular Bacteria. Th is code

can be found in Level 0 of the simulation.

Once the getMoveLocations has returned the ArrayList of possible valid moves,

the Critter’s selectMoveLocation and makeMove methods will be called.

Questions to Ponder

1. Why does the simulation appear not to work correctly for some situations? For example,

looking at the simulations below one would think that termination should take effect

on the next step, however it does not. What possible reasons could make your act

67

method work in such a way? The following four simulation situations do not terminate

correctly. How can this be corrected? List the steps needed to support your reason(s).

Save My Heart

68

Special Focus: GridWorld Case Study

2 Why does the following code not work?

for (Location loc : locations)
{
 if (validLocation (loc, getHeartLocation()))
 {
 tempHold.add(temp);
 }
}

3. Why create a new array in removeInvalidLocations in the
WhiteBloodCellCritter method?

4. Once the Heart turns BLACK the simulation should end. Why does the simulation

continue?

5. Why is it a good idea to enlarge the grid size to 12 x 12? How can this be accomplished?

6. (AB) Another way to implement a method to obtain valid locations is to modify the

method getValidAdjacentLocations in AbstractGrid allowing the

creation of a list of locations in the area within which the WhiteBloodCellCritter
can move.

7. (A or AB) See if you can develop another way to implement the way in which valid

locations for the WhiteBloodCellCritter can be found.

69

Level 2

Th e simulation at Level 2 contains three Actors: a Heart, a Bacteria and a
WhiteBloodCellCritter.

Th e Bacteria’s goal is to infect the Heart by taking the shortest possible path

to the Heart. Th e simulation ends (heart turns BLACK) when the Bacteria
lands on a cell that is adjacent to the Heart. Th is is similar to the situation to

termination in Level 0. Th e Bacteria possesses an ability to become aware of

a WhiteBloodCellCritter, and if so, changes direction. Th is situation existed

in Level 1 of the simulation. In addition, the WhiteBloodCellCritter will

attack (move toward) a Bacteria if the Bacteria is within a two-cell

distance of a WhiteBloodCellCritter. Th is attack is represented by the

WhiteBloodCellCritter moving in the direction of the Bacteria, but is unable

to travel further than the two-cell distance limitation placed upon it in Level 1 of the

simulation.

 WhiteBloodCellCritter—Moves randomly within a two-cell range within a 5 × 5

 cell grid with the Heart at its center. Th e WhiteBloodCellCritter
can “see” two grid blocks in any direction from its current

position. If the Bacteria is within two grid blocks of the
WhiteBloodCellCritter, the WhiteBloodCellCritter
attacks the Bacteria by moving one grid block in the direction of the
Bacteria.

 Bacteria—Knows the position of the Heart and moves

 in the shortest possible path toward it. In addition, the Bacteria
can “see” two grid blocks in any direction from its current

position. If the Bacteria is within two grid blocks of the

WhiteBloodCellCritter the Bacteria moves one

grid block in the opposite direction away from the location of the
WhiteBloodCellCritter.

 Heart—Does not move, but turns BLACK once the Bacteria is in

 an adjacent cell.

Below are several phases of a graphical simulation demonstrating how the Heart,
Bacteria and WhiteBloodCellCritter interact.

Graph 1.9 shows initial location of the Heart, Bacteria1 and
WhiteBloodCellCritter prior to run. Graph 1.10 shows the location of the
Heart, Bacteria1 and WhiteBloodCellCritter aft er two steps of the

simulation. Th e resolution of this encounter is shown in Graph 1.11 and Graph 1.12.

Save My Heart

70

Special Focus: GridWorld Case Study

Graph 1.9 Graph 1.10

Graph 1.11 Graph 1.12

71

Addressing the new actions of the WhiteBloodCellCritter reveals many similar

traits from its Level 1 implementation. It would be prudent to utilize existing methods and

write new ones for the additional responsibilities that the WhiteBloodCellCritter
has been given. To do this, inherit all the current WhiteBloodCellCritter
methods and create a new class WhiteBloodCellCritter2 that extends
WhiteBloodCellCritter.

public class WhiteBloodCellCritter2 extends
 WhiteBloodCellCritter

Items for consideration

1. Set the constructor to use a gentle “whiteBloodCellCritter2” color.

2. Find the location of the Heart and WhiteBloodCellCritter2.

3. Check to see if close to a Bacteria1.

4. Move in Bacteria1’s direction or move like a WhiteBloodCellCritter as in

Level 1.

Because a WhiteBloodCellCritter2 is a Critter, its movement should be

implemented by overriding the methods that are called by Critter’s act method.

Remember the act method of the Critter class calls fi ve other Critter methods.

 public void act()
 {
 if (getGrid() == null)
 return;
 ArrayList<Actor> actors = getActors();
 processActors(actors);
 ArrayList<Location> moveLocs = getMoveLocations();
 Location loc = selectMoveLocation(moveLocs);
 makeMove(loc);
 }

Th e WhiteBloodCellCritter2 constructor should be simple. Because

WhiteBloodCellCritter2 is a WhiteBloodCellCritter and
WhiteBloodCellCritter is an Actor, its constructor can invoke the Actor’s
setColor method, setting the color of a WhiteBloodCellCritter2 to ORANGE.

WhiteBloodCellCritter’s getActors and processActors methods were

implemented to do nothing, so we don’t need to override them here.

Th e most challenging method to write is getMoveLocations. Th is method returns an
ArrayList of possible locations that the WhiteBloodCellCritter2 can legally

move. Th ere are now two scenarios that the WhiteBloodCellCritter2 must take

Save My Heart

72

Special Focus: GridWorld Case Study

into account before movement takes place: when within range of a Bacteria1, or when

not within range of a Bacteria1. When not within range of a Bacteria1 is the

easier code to write and is the same as that used for the WhiteBloodCellCritter2
in Level 1 of the simulation. When within range of a Bacteria1 there are more things to

consider. Below is the method header and pseudo-code outlining a possible process.

public ArrayList<Location> getMoveLocations()
{
 // if close to a Bacteria1
 // fi nd the direction toward the Bacteria1
 // create an array of valid locations
 // else
 // get the empty adjacent cells
 // remove locations that are outside its realm
 // create an array of valid locations
 // return the array
}

Let’s fi rst look at what the WhiteBloodCellCritter2 will do if it moves

within range of a Bacteria1, or if a Bacteria1 moves within range of a
WhiteBloodCellCritter2. Either situation should produce similar results, i.e., the
WhiteBloodCellCritter2’s next move being toward the Bacteria1.

If the WhiteBloodCellCritter2 is within range of a Bacteria1 the
WhiteBloodCellCritter2 will fi nd the direction from its location toward the

Bacteria1. Writing a getBacteriaLocation method that is very similar to
getHeartLocation is needed.

 public Location getBacteriaLocation()

Once you have obtained its location the next step is to ascertain if the
WhiteBloodCellCritter2 is within range of the Bacteria1. Th e method
bacteriaDetected detects if the WhiteBloodCellCritter2 is within range of

the Bacteria1.

 public boolean bacteriaDetected(Location whiteBloodCell,
 Location bacteria)

Th e next task is to fi nd the valid locations the WhiteBloodCellCritter2 can move

to, returning true if the location parameter is a valid location that then gets added to the
moveLocs array. Th is can be overridden from Level 1.

public boolean validLocation(Location loc)

73

If the WhiteBloodCellCritter2 is not within range of a Bacteria1 then it

moves the same as it did in Level 1 of the simulation.

Once the getMoveLocations has returned the ArrayList of possible valid moves

the Critter’s selectMoveLocation and makeMove methods will be called.

Questions to Ponder

1. Think about other ways the Bacteria1 could move once it “sees” a

WhiteBloodCellCritter2.

2. How could you improve the chances of the Bacteria1 gaining quicker access to the

Heart, or the WhiteBloodCellCritter2 defending the Heart?

Save My Heart

74

Special Focus: GridWorld Case Study

Level 3

Th e simulation at Level 3 contains three Actors: a Heart, a Bacteria and a

WhiteBloodCellCritter.

Th e Bacteria’s goal is to infect the Heart by taking the shortest possible path to the
Heart. Th e simulation ends (heart turns BLACK) when the Bacteria lands on a cell

that is adjacent to the Heart. Th is is similar to the situation for termination in Level 0. Th e
Bacteria possesses an ability to become aware of a WhiteBloodCellCritter2,

and if so, changes direction by a set pattern and deploys a decoy of itself, hoping that the
WhiteBloodCellCritter2 will chase this new entity. Th is existed in Level 1 of

the simulation. Th e WhiteBloodCellCritter2 will act as it did in Level 2 of the

simulation.

 WhiteBloodCellCritter—Moves randomly within a two-cell range; a 5 � 5 cell grid

 with the Heart at its center. Th e WhiteBloodCellCritter2
can “see” two grid blocks in any direction from its current

position. If the Bacteria is within two grid blocks of the
WhiteBloodCellCritter2 the WhiteBloodCellCritter2
attacks the Bacteria by moving one grid block in the direction of the
Bacteria (as in Level 2).

 Bacteria—Knows the position of the Heart and moves in the

 shortest possible path toward it. In addition, the Bacteria can “see” two

grid blocks in any direction from its current position. If the Bacteria
is within two grid blocks of the WhiteBloodCellCritter2,
the Bacteria moves in a predefi ned pattern in relationship to the
WhiteBloodCellCritter2 (as in Level 1) while deploying a decoy of

itself.

 Heart—Does not move, but turns BLACK once the Bacteria is in

 an adjacent cell (as in previous levels).

Th is assignment and accompanying fi les may be found at

http://www.apcomputerscience.com/gridworld

 • student assignment handouts

 • source code for complete solution (all levels)

 • graphics

 • a detailed narrative for two additional levels (AB extensions):

 • Level 4: Similar to Level 3. Th e data structures used to simulate the game could be a

PriorityQueue, Map or Set. In fact it would be interesting to analyze which is the best

to use.

 • Level 5: Implements many bacteria and white blood cell critters—a real challenge.

75

About the Authors

Chief Editor

Debbie Carter teaches AP Computer Science and assists faculty with technology integration

at Lancaster Country Day School in Lancaster, Pennsylvania. She has served as both a

Reader and Question Leader for the AP Computer Science Exams and has been a College

Board consultant since 1996. She currently sits on the board of the Computer Science

Teachers Association.

Authors

Instructional Unit: Save My Heart

Reg Hahne is Instructional Team Leader of Career Technology Education (CTE) at

Marriotts Ridge High School in Maryland. Reg was an AP Computer Science Exam Reader

for many years and has served on the AP Computer Science Development Committee.

Article: Th e Design of the GridWorld Case Study

Cay Horstmann is a professor in the Department of Computer Science at San Jose State

University, California, and author of many popular computer science text books. Cay is

presently a member of the AP Computer Science Development Committee.

Instructional Unit: Early Exercises for GridWorld

Judith Hromcik is an AP Computer Science teacher at Arlington High School in Arlington,

Texas. Judith previously served on the AP Computer Science Development Committee and

has been a Reader and a Question Leader at the AP Computer Science Exam Reading. She

has been a College Board consultant since 1997 and has conducted many AP Computer

Science Summer Institutes. Judith wrote the solutions for the new GridWorld case study and

has pilot-tested GridWorld in her classes. She has a strong interest in developing curriculum

for computer science and technology applications.

Article: Integrating GridWorld

Jill Kaminski has been privileged to be a computer science teacher since 1999. Prior to that,

she was a soft ware engineer for over 12 years, working primarily on fi rmware for various

spacecraft projects. She teaches in both traditional and online environments, and has been

an AP Computer Science Exam Reader. She lives in Colorado with her husband.

Instructional Unit: Ant Farm

Robert Glen Martin has been an AP Computer Science teacher since 2000. He has been

teaching at the School for the Talented and Gift ed (Newsweek’s 2006 Best Public High

School) since 2002. He is an AP Computer Science Exam Reader and a College Board

consultant. Glen’s computer science program has been recognized every year since 2005 by

the College Board as the small school leader in helping the widest segment of total school

About the Authors

76

Special Focus: GridWorld Case Study

population attain college-level mastery of AP Computer Science A and AB. He was also

named the 2005–06 Siemens Advanced Placement Teacher of the Year for Texas.

Instructional Unit: Board Games

Dave Wittry is an AP Computer Science teacher at the Taipei American School in Taiwan.

Dave has been an AP Computer Science Exam Reader for many years and a College Board

consultant since 2005. He has led many AP Computer Science Summer Institutes over the

past 5 years. Dave is an exam contributor for Be Prepared for the AP Computer Science Exam

in Java by Maria Litvin. He moved to Taiwan in 2005 with his wife, Jody, and two young

children, Kaylin and Darren.

F07CSSF125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

