

AP® Computer Science AB
2006 Free-Response Questions

The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and
opportunity. Founded in 1900, the association is composed of more than 5,000 schools, colleges, universities, and other
educational organizations. Each year, the College Board serves seven million students and their parents, 23,000 high schools, and
3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and
teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement
Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied
in all of its programs, services, activities, and concerns.

© 2006 The College Board. All rights reserved. College Board, AP Central, APCD, Advanced Placement Program, AP, AP
Vertical Teams, Pre-AP, SAT, and the acorn logo are registered trademarks of the College Board. Admitted Class Evaluation
Service, CollegeEd, connect to college success, MyRoad, SAT Professional Development, SAT Readiness Program, and Setting the
Cornerstones are trademarks owned by the College Board. PSAT/NMSQT is a registered trademark of the College Board and
National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners.
Permission to use copyrighted College Board materials may be requested online at:
www.collegeboard.com/inquiry/cbpermit.html.

Visit the College Board on the Web: www.collegeboard.com.
AP Central is the official online home for the AP Program: apcentral.collegeboard.com.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
2

COMPUTER SCIENCE AB
SECTION II

Time—1 hour and 45 minutes
Number of questions—4

Percent of total grade—50

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM SEGMENTS ARE TO BE
WRITTEN IN Java.

Notes:
• Assume that the classes listed in the Quick Reference found in the Appendix have been imported where

appropriate.
• Assume that the implementations of the interfaces for stacks, queues, and priority queues (pages A4-A5 in the

Appendix) behave as specified.
• Assume that the implementation classes ListNode and TreeNode (page A3 in the Appendix) are used for

any questions referring to linked lists or trees, unless otherwise specified.
• ListNode and TreeNode parameters may be null. Otherwise, unless noted in the question, assume that

parameters in method calls are not null and that methods are called only when their preconditions are
satisfied.

• In writing solutions for each question, you may use any of the accessible methods that are listed in classes
defined in that question. Writing significant amounts of code that can be replaced by a call to one of these
methods may not receive full credit.

• When Big-Oh running time is required for a response, you must use the most restrictive Big-Oh expression. For

example, if the running time is ()O n , a response of 2()O n will not be given credit.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
3

 1. A thesaurus is a list of words in which each word is associated with a corresponding set of other words having
the same meaning (synonyms).

 The following shows an example of words and synonyms that could be listed in a thesaurus.

Word Synonym Set

excellent {brilliant, great, outstanding, tremendous}

super {excellent, fantastic, great, wonderful}

wonderful {amazing, brilliant, fantastic, great}

 The thesaurus can be represented using a Map in which each key is a word, and the value associated with a

particular word is a Set of synonyms. A partial definition of the Thesaurus class is shown below.

public class Thesaurus
{
 // stores (word, synonym set) pairs as (String, Set of Strings)
 private Map wordMap;

 public Thesaurus()
 { wordMap = new HashMap(); }

 // adds syn to the set of synonyms associated with word
 // in this Thesaurus;
 // if word is not a key in this Thesaurus, adds an
 // entry with word as key and a set containing syn
 // as the associated value
 public void addSynonym(String word, String syn)
 { /* to be implemented in part (a) */ }

 // removes the word syn from each synonym set in this Thesaurus;
 // returns a set of the words (keys) whose associated
 // synonym sets originally contained the word syn;
 // if syn was not contained in any synonym set, returns an empty set
 public Set removeSynonym(String syn)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
4

(a) Write the Thesaurus method addSynonym. If word is already a key in wordMap, syn is
added to the set associated with word. Otherwise, a new entry is added to wordMap with word as the
key and a set containing syn as the associated value.

 For example, assume that the Thesaurus object myThesaurus has been declared and initialized with
the values shown at the beginning of this question. The following code segment contains two calls to
addSynonym.

myThesaurus.addSynonym("wonderful", "magnificent");
myThesaurus.addSynonym("awesome", "wonderful");

 After the code segment has executed, the contents of myThesaurus are as shown below.

Word Synonym Set

excellent {brilliant, great, outstanding, tremendous}

super {excellent, fantastic, great, wonderful}

wonderful {amazing, brilliant, fantastic, great, magnificent}

awesome {wonderful}

 Complete method addSynonym below.

 // adds syn to the set of synonyms associated with word
 // in this Thesaurus;
 // if word is not a key in this Thesaurus, adds an
 // entry with word as key and a set containing syn
 // as the associated value
 public void addSynonym(String word, String syn)

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
5

(b) Write the Thesaurus method removeSynonym. The word syn should be removed from every
synonym set in the thesaurus. Method removeSynonym returns a set (possibly empty) that contains the
keys for which the associated synonym set was modified. No key is ever removed from the thesaurus, even
if the synonym set associated with that key becomes empty.

 For example, assume that the Thesaurus object myThesaurus has been declared and initialized with
the following values.

Word Synonym Set

excellent {brilliant, great, outstanding, tremendous}

super {excellent, fantastic, great, wonderful}

wonderful {amazing, brilliant, fantastic, great, magnificent}

awesome {wonderful}

 Consider the following statement.

Set affectedWords = myThesaurus.removeSynonym("wonderful");

 After the statement has executed, the contents of myThesaurus are as shown below, and the set

affectedWords contains {super, awesome}. Note that the words "wonderful" and "awesome" still
appear as keys in the thesaurus.

Word Synonym Set

excellent {brilliant, great, outstanding, tremendous}

super {excellent, fantastic, great}

wonderful {amazing, brilliant, fantastic, great, magnificent}

awesome {}

 Complete method removeSynonym below.

 // removes the word syn from each synonym set in this Thesaurus;
 // returns a set of the words (keys) whose associated
 // synonym sets originally contained the word syn;
 // if syn was not contained in any synonym set, returns an empty set
 public Set removeSynonym(String syn)

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
6

 2. A company sells products in the form of items, packs, and bundles as listed below.

 1) An item consists of a description and a price.

 2) A pack consists of a product and an integer quantity indicating how many of that product are included
in the pack.

 3) A bundle consists of a list of products.

 Examples of each type of product are shown in the following table.

Product Price Product Type

ZapIt Microwave Oven 90.00 Item

NeverBurn Toaster 20.00 Item

4 x NeverBurn Toaster 80.00 Pack

Home Cooking Kit, containing 110.00 Bundle
 ZapIt Microwave Oven
 NeverBurn Toaster

Restaurant Starter Kit, containing 190.00 Bundle
 Home Cooking Kit
 4 x NeverBurn Toaster

5 x Home Cooking Kit 550.00 Pack

 The three types of products are represented by the three classes Item, Pack, and Bundle. All three

classes implement the following Product interface.

public interface Product
{
 double getPrice();
}

 The following diagram shows the relationship between the Product interface and the Item, Pack, and

Bundle classes.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
7

 The definition of the Item class is as follows.

public class Item implements Product
{
 private String itemDescription; // description of this item
 private double unitPrice; // price of this item, in dollars

 public Item(String description, double price)
 {
 itemDescription = description;
 unitPrice = price;
 }

 // returns the price of this item
 public double getPrice()
 {
 return unitPrice;
 }

 // sets the price of this item
 public void setPrice(double price)
 {
 unitPrice = price;
 }

 // returns the description of this item
 public String getDescription()
 {
 return itemDescription;
 }
}

 In this problem, you will design and implement the Pack and Bundle classes.

(a) Write the Pack class that implements the Product interface. A Pack is used to represent multiple
occurrences of a given product. Its constructor should have two parameters: the first represents the number
of occurrences of a product in the pack, and the second represents the product.

 The price of a Pack is the price of the product times the quantity. If the price of the product changes after
the Pack has been constructed, the result of a call to getPrice for the Pack should reflect the
updated product price.

 The following code segment shows an example of how a Pack object can be declared and initialized.

Product toaster = new Item("NeverBurn Toaster", 20.0);
Product toasterPack = new Pack(4, toaster);

 Write the Pack class below.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
8

(b) Write the Bundle class that implements the Product interface. Its constructor should take no
parameters and create a bundle that contains no products. There should be an add method that adds
products to the bundle. It is possible for the same product to appear multiple times in a bundle. The price of
the bundle is the sum of the prices of the products in the bundle. If the price of a product in a bundle changes
after the Bundle has been constructed, the result of a call to getPrice for the Bundle should
reflect the updated product price.

 The following code segment creates instances of the products listed in the example at the beginning of this
question.

Product oven = new Item("ZapIt Microwave Oven", 90.0);
Product toaster = new Item("NeverBurn Toaster", 20.0);
Product toasterPack = new Pack(4, toaster);

Bundle homeCookingKit = new Bundle();
homeCookingKit.add(oven);
homeCookingKit.add(toaster);

Bundle restaurantStarterKit = new Bundle();
restaurantStarterKit.add(homeCookingKit);
restaurantStarterKit.add(toasterPack);

Product homeKitPack = new Pack(5, homeCookingKit);

 Write the Bundle class below.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
9

 3. Consider a class WaitingList that uses the ListNode class to manipulate linked lists. The definition of
class WaitingList is as follows.

public class WaitingList
{
 private int numNodes;
 private ListNode front;

 // returns the number of nodes in this list
 public int size()
 { return numNodes; }

 // returns a reference to the node at index k,
 // where the indexes are numbered 0 through size()-1
 // precondition: 0 <= k < size()
 private ListNode getKthNode(int k)
 { /* to be implemented in part (a) */ }

 // removes the last num nodes from other and attaches them
 // in the same order to the end of this WaitingList;
 // updates the number of nodes in each list to reflect the move
 // precondition: size() > 0;
 // 0 < num <= other.size()
 public void transferNodesFromEnd(WaitingList other, int num)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
10

(a) Write the WaitingList method getKthNode. This method should return a reference to the node at
index k. Nodes in a WaitingList are indexed consecutively from the front, starting at 0.

 In the diagram below, list1.getKthNode(0) returns a reference to the node containing A,
list1.getKthNode(1) returns a reference to the node containing B, and
list1.getKthNode(2) returns a reference to the node containing C.

 Complete method getKthNode below.

 // returns a reference to the node at index k,
 // where the indexes are numbered 0 through size()-1
 // precondition: 0 <= k < size()
 private ListNode getKthNode(int k)

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
11

(b) Write the WaitingList method transferNodesFromEnd. This method moves the last num
nodes from the list other to the end of this list and updates the sizes of the two lists to reflect the results
of the move. If num is equal to the size of other, the instance variable front in other will need
to be updated as well.

 For example, assume that two WaitingList objects have been defined and initialized as in the
following diagram.

 The result of the call list2.transferNodesFromEnd(list1, 2) would be as shown in the next

diagram.

 Note that it is not necessary to copy nodes. Solutions that allocate any new ListNode objects will not
receive full credit.

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
12

 In writing transferNodesFromEnd, you may assume that getKthNode works as specified
regardless of what you wrote in part (a).

 Complete method transferNodesFromEnd below.

 // removes the last num nodes from other and attaches them
 // in the same order to the end of this WaitingList;
 // updates the number of nodes in each list to reflect the move
 // precondition: size() > 0;
 // 0 < num <= other.size()
 public void transferNodesFromEnd(WaitingList other, int num)

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
13

 4. This question involves reasoning about the code from the Marine Biology Simulation case study. A copy of the
code is provided as part of this exam.

 Consider the problem of finding a particular kind of path, known as an NE-path, between two empty locations
in an environment. An NE-path is an ordered list of empty locations in which each successive location must be
either the north neighbor or the east neighbor of the previous location. For example, the diagram below shows an
environment in which the occupied locations are indicated by XX. One possible NE-path between start location
(5, 1) and end location (2, 4) as shown in the diagram is

[(5, 1), (5, 2), (4, 2), (3, 2), (3, 3), (3, 4), (2, 4)]

 Note that there may be more than one NE-path connecting two locations in an environment. In the above
diagram, there are three distinct NE-paths that connect (5, 1) to (2, 4).

[(5, 1), (5, 2), (4, 2), (3, 2), (3, 3), (3, 4), (2, 4)]
[(5, 1), (5, 2), (4, 2), (4, 3), (3, 3), (3, 4), (2, 4)]
[(5, 1), (5, 2), (4, 2), (4, 3), (4, 4), (3, 4), (2, 4)]

 Similarly, there may be locations that have no NE-paths connecting them. In the above diagram, (3, 3) and (0, 4)

cannot be connected because all possible NE-paths are blocked by occupied locations. Likewise, (2, 4) cannot be
the start of an NE-path to (5, 1) because (2, 4) is north and east of (5, 1).

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

 GO ON TO THE NEXT PAGE.
14

 An NE-path between a start location and an end location can be found recursively. For an NE-path between start
and end locations to be possible, both locations must be empty and the start location must not be north or east of
the end location. If the start and end locations are the same, then the NE-path will consist of that single location.
Otherwise, an NE-path can be searched for by trying to recursively find an NE-path from the north neighbor of
the start location to the end location. If such a path is not found, a similar recursive attempt is made from the east
neighbor of the starting location. If either of these NE-paths exists, the start location can be added to the front of
that NE-path to complete an NE-path from start to end.

 For example, the path from (5, 1) to (2, 4) in the above diagram is found by first attempting to find an NE-path

from (4, 1) to (2, 4). This attempt fails because the starting location, (4, 1), is not empty. Next, the attempt to
recursively find an NE-path from (5, 2) to (2, 4) succeeds. Suppose it yields the following path.

[(5, 2), (4, 2), (3, 2), (3, 3), (3, 4), (2, 4)]

 The start location (5, 1) is then added to the front of that path to yield the NE-path shown in the diagram.

 The incomplete definition of the PathFinder class is given below. The class declares a private field

theEnv to refer to the Environment being searched. You will implement two methods for the
PathFinder class to complete the recursive path-finding algorithm.

public class PathFinder
{
 private Environment theEnv;

 // returns true if the specified locations are possible
 // starting and ending locations for an NE-path
 // otherwise, returns false
 private boolean possibleEnds(Location start, Location end)
 { /* to be implemented in part (a) */ }

 // returns a list containing a sequence of empty locations
 // that form an NE-path from start to end;
 // returns null if no such path exists
 // postcondition: theEnv is unchanged
 public List findNEPath(Location start, Location end)
 { /* to be implemented in part (b) */ }

 // There may be fields, constructors, and methods that are not shown.
}

2006 AP® COMPUTER SCIENCE AB FREE-RESPONSE QUESTIONS

© 2006 The College Board. All rights reserved.
Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

15

(a) Write the PathFinder method possibleEnds, which returns true if the specified locations are
possible end points for an NE-path. In order to be possible end points for an NE-path, both locations must be
empty and the start location cannot be north or east of the end location.

 Complete method possibleEnds below.

 // returns true if the specified locations are possible
 // starting and ending locations for an NE-path
 // otherwise, returns false
 private boolean possibleEnds(Location start, Location end)

(b) Write the PathFinder method findNEPath, which recursively searches the environment to find an
NE-path between the locations start and end. If there is more than one NE-path connecting the
locations, the method may return any one of those NE-paths. If there are no NE-paths connecting the
locations, the method should return null.

 In writing findNEPath, you may assume that possibleEnds works as specified regardless of what
you wrote in part (a).

 Complete method findNEPath below.

 // returns a list containing a sequence of empty locations
 // that form an NE-path from start to end;
 // returns null if no such path exists
 // postcondition: theEnv is unchanged
 public List findNEPath(Location start, Location end)

END OF EXAM

