General Notes About 2005 AP Physics Scoring Guidelines

1. The solutions contain the most common method(s) of solving the free-response questions and the allocation of points for these solutions. Other methods of solution also receive appropriate credit for correct work.

2. Generally, double penalty for errors is avoided. For example, if an incorrect answer to part (a) is correctly substituted into an otherwise correct solution to part (b), full credit will usually be awarded. One exception to this may be cases when the numerical answer to a later part should be easily recognized as wrong, e.g., a speed faster than the speed of light in vacuum.

3. Implicit statements of concepts normally receive credit. For example, if use of the equation expressing a particular concept is worth one point, and a student’s solution contains the application of that equation to the problem but the student does not write the basic equation, the point is still awarded.

4. The scoring guidelines typically show numerical results using the value \(g = 9.8 \text{ m/s}^2 \), but use of \(10 \text{ m/s}^2 \) is of course also acceptable.

5. Numerical answers that differ from the published answer due to differences in rounding throughout the question typically receive full credit. The exception is usually when rounding makes a difference in obtaining a reasonable answer. For example, suppose a solution requires subtracting two numbers that should have five significant figures and that differ starting with the fourth digit (e.g., 20.295 and 20.278). Rounding to three digits will lose the accuracy required to determine the difference in the numbers, and some credit may be lost.
The velocities can be found from the slope of the position graph. For showing a positive velocity of magnitude 1.5 m/s (i.e., 12 m/8 s) between 0 s and 8 s inclusive 1 point
For showing zero velocity between 10 s and 18 s inclusive 1 point
For showing a negative velocity of magnitude 2.4 m/s (i.e., 12 m/5 s) between 20 s and 25 s inclusive 1 point
For showing two nonvertical transition regions; between t = 8 s and 10 s and between t = 18 s and 20 s 1 point
Question 1 (continued)

(b) 3 points

(i) For a definition or equation for average acceleration
\[a_{avg} = \frac{\Delta v}{\Delta t} \quad \text{OR} \quad v = v_0 + at \]
1 point

For the correct substitution from part (a)
\[a_{avg} = \frac{(0 - 1.5 \text{ m/s})}{2 \text{ s}} \]
1 point

For the correct answer including units and sign
\[a_{avg} = -0.75 \text{ m/s}^2 \]
1 point

(ii) 1 point

\[\vec{a}_{avg} \]

For a correctly drawn vector, with or without a label
1 point

(c) 2 points

The acceleration is zero, so the normal force (apparent weight) is equal to the gravitational force.

For a correct relationship leading to a calculation of apparent weight
\[N = W = mg \quad \text{OR} \quad N - W = ma \]
1 point

\[W_{app} = (70 \text{ kg})(9.8 \text{ m/s}^2) \]

For the correct answer with units
\[W_{app} = 686 \text{ N} \quad \text{(or 700 N using } g = 10 \text{ m/s}^2 \text{) } \]
1 point
Question 2

(a) 2 points

For each correctly drawn and labeled tension, with arrowhead in right direction 1 point each
One point was deducted for each of the following until score reached zero:
No force of gravity
Each extraneous force
Any missing labels
Drawing all forces along correct lines with labels but no arrowheads received only one point.
Components of the tension in the pendulum string could be included in addition to or instead of the net tension, as long as they were clearly labeled as such.

(b) 4 points

For any indication that the net force is zero 1 point
For an attempt to determine the components of the tension in the pendulum string 1 point
For correctly determining these components 1 point
\[T_h = T_p \sin 30^\circ \]
\[mg = T_p \cos 30^\circ \]
\[\frac{T_h}{mg} = \frac{\sin 30^\circ}{\cos 30^\circ} = \tan 30^\circ \]
\[T_h = mg \tan 30^\circ \]
\[T_h = (1.8 \text{ kg})(9.8 \text{ m/s}^2)\tan 30^\circ \]
For the correct answer with units 1 point
\[T_h = 10 \text{ N} \]
(b) (continued)

Alternate solution
For indicating that the addition of the three force vectors gives a 30-60-90 right triangle
For a correct trigonometric relationship between forces
\[\frac{T_h}{mg} = \tan 30^\circ \]
For the correct answer with units
\[T_h = 10 \text{ N} \]

If no forces were drawn in part (a), one point could be earned for writing the component equations
\[T = mg \sin \theta \]
and two points for
\[T = mg \tan \theta. \]

(c) 4 points
For any indication of conservation of energy
For any indication of the need to use a change in height
\[mgh_0 + \frac{1}{2}mv_0^2 = mgh_f + \frac{1}{2}mv_f^2 \]
For setting \(v_0 = 0 \)
\[\frac{1}{2}mv_f^2 = mg \Delta h \]
\[v_f = \sqrt{2g \Delta h} \]
\[\Delta h = L - L \cos 30^\circ \]
\[v_f = \sqrt{2gL(1 - \cos 30^\circ)} \]
\[v_f = \sqrt{2(9.8 \text{ m/s}^2)(2.3 \text{ m})(1 - \cos 30^\circ)} \]
For the correct answer, with units
\[v_f = 2.5 \text{ m/s} \]

A solution that used the kinematic equation
\[v_f^2 = v_0^2 + 2as \]
could only receive full credit if the student explained how the equation is equivalent to conservation of energy.
Question 3

<table>
<thead>
<tr>
<th>Distribution of points</th>
<th>15 points total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 4 points</td>
<td></td>
</tr>
</tbody>
</table>

For use of the correct formula for the electric field E

$$E = k \frac{q}{r^2} \quad \text{OR} \quad E = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2}$$

For adding the two E vectors from the charges

$$E_O = \left(+k \frac{2q}{a^2} \right) + \left(-k \frac{q}{a^2} \right)$$

For the correct (positive) expression for the magnitude of the field

$$E_O = k \frac{q}{a^2}$$

For any indication that the field is in the $+y$-direction

(b) 3 points

For use of the correct formula for the potential V

$$V = k \frac{q}{r} \quad \text{OR} \quad V = \frac{1}{4\pi \varepsilon_0} \frac{q}{r}$$

For adding the two potentials

$$V_O = k \frac{2q}{a} + k \frac{q}{a}$$

For the correct (positive) answer

$$V_O = \frac{3kq}{a}$$

(c) (i) and (ii) 4 points

For determining the distance r between charges in terms of x_0 and a in either part (i) or (ii)

$$r = \sqrt{x_0^2 + a^2}$$

For use of Coulomb’s law in either part (i) or (ii)

$$F = k \frac{q_1 q_2}{r^2}$$

For both correct substitution of charges into Coulomb’s law and correct substitution of the previously determined expression for r in either part (i) or (ii)

For correct (positive) answer for both part (i) and (ii)

For part (i): $F_q = k \frac{(-q)(q)}{x_0^2 + a^2} = k \frac{q^2}{x_0^2 + a^2}$

For part (ii): $F_q = k \frac{(-q)(2q)}{x_0^2 + a^2} = k \frac{2q^2}{x_0^2 + a^2}$
(d) 4 points

For having all three vectors on the same side of the x-axis (i.e., recognizing that the vertical components should all be in the same direction) 1 point
For a single resultant vector from A pointing down and to the right, toward a point below the x-axis and above $+2q$ 1 point
For a single resultant vector from C pointing down and to the left, toward a point below the x-axis and above $+2q$ 1 point
For a single resultant vector pointing straight down from B 1 point

Magnitudes of the vectors and any components that may have been drawn were not evaluated.
Question 4

15 points total

(a) 2 points

For checking any length-measuring device and not the stopwatch
Only one point was awarded for checking any length-measuring device and the stopwatch.
No points were awarded if no length-measuring device was checked or all the equipment was checked.

(b) 3 points

For a diagram including at least a laser, a slide, and a screen
For correctly labeling the equipment
For correctly identifying the two distances to be measured, with symbols

Example diagram:
Question 4 (continued)

(c) 3 points

Points could only be earned in the following order, with each successive point dependent on earning the previous point.

For a central maximum 1 point
For a continuous graph with approximately equally spaced maxima 1 point
For nothing else incorrect (e.g., no negative intensity) 1 point

(d) 4 points

For appropriate use of equipment (including all items checked in (a)) 1 point
For indicating a measurement of the distance from the slits to the screen 1 point
For indicating appropriate measurements of the maxima (e.g., the distance between adjacent maxima or the distance of successive maxima from the center) 1 point
For a complete and clear description 1 point
For example:
Set up the laser to shine on the slide, and set the screen far away on the other side of the slide.
Measure the distance L from the slide to the screen with the tape measure.
Use the ruler to measure the distance x between adjacent maxima.
Question 4 (continued)

Distribution of points

(e) 3 points

Points could only be earned in the following order, with each successive point dependent on earning the previous point.

For using appropriate equations 1 point
For explicitly identifying, in some other part of the question, the symbols used here 1 point
For correct correlation of symbols in equations to symbols in diagram in part (b) 1 point

\[x_m = \frac{m\lambda L}{d} \quad \text{OR} \quad d \sin \theta = m\lambda \quad \text{and} \quad \tan \theta = \frac{x_m}{L} \] (since \(\sin \theta = \tan \theta \) for small angles),

where \(m \) is an integer, \(x_m \) is the distance of a maximum of order \(m \) from the central maximum, \(\lambda \) is the wavelength, \(L \) is the distance between slits and the screen, and \(d \) is the slit separation.

Solving for \(d \)

\[d = \frac{\lambda L}{x} \] using distances \(x \) between adjacent maxima and \(\Delta m = 1 \)

\[\text{OR} \quad d = \frac{m\lambda L}{x_m} \] using distances from center of pattern
Question 5

10 points total

(a) 3 points

For an equation that uses the ratio of densities $\frac{\rho_r}{\rho_w}$ to find the fraction of the total volume (or height) submerged

The weight of the raft equals the weight of the displaced water.

$W_r = W_w$

$m_r g = m_w g$

$\rho_r V_r g = \rho_w V_w g$

Solving for the volume of displaced water, which equals the submerged volume of the raft

$V_w = \frac{\rho_r}{\rho_w} V_r$

For recognizing that the submerged volume (or height) must be subtracted from the total volume (or height)

$V_{submerged} = Ah = V_r - V_w$

$Ah = V_r - \frac{\rho_r}{\rho_w} V_r = V_r \left(1 - \frac{\rho_r}{\rho_w}\right)$

$h = \frac{V_r}{A} \left(1 - \frac{\rho_r}{\rho_w}\right)$

$h = \frac{1.8 \text{ m}^3}{8.2 \text{ m}^2} \left(1 - \frac{650 \text{ kg/m}^3}{1000 \text{ kg/m}^3}\right)$

For the correct answer

$h = 0.077 \text{ m}$

For an equation that uses the ratio of densities $\frac{\rho_r}{\rho_w}$ to find the fraction of the total volume (or height) submerged

1 point

The weight of the raft equals the weight of the displaced water.

$W_r = W_w$

$m_r g = m_w g$

$\rho_r V_r g = \rho_w V_w g$

Solving for the volume of displaced water, which equals the submerged volume of the raft

$V_w = \frac{\rho_r}{\rho_w} V_r$

For recognizing that the submerged volume (or height) must be subtracted from the total volume (or height)

$V_{submerged} = Ah = V_r - V_w$

$Ah = V_r - \frac{\rho_r}{\rho_w} V_r = V_r \left(1 - \frac{\rho_r}{\rho_w}\right)$

$h = \frac{V_r}{A} \left(1 - \frac{\rho_r}{\rho_w}\right)$

$h = \frac{1.8 \text{ m}^3}{8.2 \text{ m}^2} \left(1 - \frac{650 \text{ kg/m}^3}{1000 \text{ kg/m}^3}\right)$

For the correct answer

$h = 0.077 \text{ m}$

Some students misinterpreted the statement about the volume of the raft, taking it to mean the volume of the part above the water instead of the total volume. If the solution to part (b) showed work that demonstrated understanding of the concepts needed for part (a), appropriate credit for this part was awarded.
(b) 4 points

For indicating that the buoyant force is equal to the weight of the raft
\[F_{buoy} = W_r \]
1 point

For correct substitutions for calculating the buoyant force, either by directly calculating the raft’s weight or calculating the weight of the displaced water
\[F_{buoy} = \rho_r V_r g = (650 \text{ kg/m}^3)(1.80 \text{ m}^3)(9.8 \text{ m/s}^2) \]
OR \[F_{buoy} = \rho_w V_w g = (1000 \text{ kg/m}^3)(1.17 \text{ m}^3)(9.8 \text{ m/s}^2) \]
1 point

For the correct answer with units
\[F_{buoy} = 1.15 \times 10^4 \text{ N} \] (or \[1.17 \times 10^4 \text{ N} \] using \[g = 10 \text{ m/s}^2 \])
1 point

For indicating that the direction of the buoyant force is up
1 point

(c) 3 points

The additional weight that can be carried is equal to the weight of water displaced by the part of the raft now above water.

For indicating a correct equation for the net force
\[W_{addl} = W_{extra \text{ water}} \quad \text{OR} \quad W_{addl} = F_{buoy NEW} - W_{raft} \]
1 point

The first equation above yields \[W_{addl} = \rho_w V_{top \text{ g}} = \rho_w Ahg \]
Substituting the algebraic expression for \[h \] from part (a) and simplifying yields
\[W_{addl} = \rho_w V_r g - \rho_r V_r g = V_r g (\rho_w - \rho_r) \], which is equivalent to substitution into the second equation above.

For correct numerical substitutions to get the weight (or mass) of the top of the raft
\[W_{addl} = (1.80 \text{ m}^3)(9.8 \text{ m/s}^2)(1000 \text{ kg/m}^3 - 650 \text{ kg/m}^3) \]
1 point

\[W_{addl} = 6200 \text{ N} \] (variation due to rounding earlier on was accepted)

For dividing the total weight (or mass) by the weight (or mass) of a person and indicating the correct number of people that the raft can carry. (The final answer must indicate a whole number of people.)
\[n = \frac{W_{addl}}{m_{ps} g} = \frac{6200 \text{ N}}{(75 \text{ kg})(9.8 \text{ m/s}^2)} = 8.4 \]
1 point

A maximum of 8 people can be on the raft.
Question 6

10 points total

(a) 2 points

For writing the ideal gas equation of state
\[PV = nRT \]
1 point

For an indication that \(V = AH \)
\[PAH = nRT \]
1 point

\[H = \frac{nRT}{PA} \]

Note: Simply writing \(PAH = nRT \) or the equivalent earned both points. If the student tried to rearrange the equation, algebra mistakes were not penalized in this part.

(b) 4 points

For labeling both axes with linear numerical scales
1 point

For having neither axis labeled with its scale starting at zero (no penalty for showing zero at the end of an axis and a “break” in the axis)
1 point

For accurately plotting five data points that closely fit a straight line with a positive slope
2 points

One point was lost if some points were inaccurately plotted.
Both points were lost if the data points were not visible, even if a line was drawn.

Example answer shown below. The question did not ask for a best-fit line, and it was not required for this part. However, a line is shown in the example, since it could be used in the determination of \(n \).
From part (a), \(H = \frac{nR}{PA} T \)

For any clear indication that the student used more than one data point

For example: Setting up a slope calculation using subtraction, averaging calculated values for \(n \) or the ratio \(\frac{H}{T} \), or using a linear regression on the calculator

For the correct slope of a best-fit line through the data points (this point not awarded if slope method not used)

For correct substitutions into a correct expression containing \(n \) using consistent units for the values of \(P, R, A, \) and \(H \)

Example using the line shown above, which happens to go through the first and last data points

Slope of line \(= \frac{nR}{PA} \)

\[
\text{Slope} = \frac{(1.47 \text{ m} - 1.11 \text{ m})}{(405 \text{ K} - 300 \text{ K})} = \frac{0.36 \text{ m}}{105 \text{ K}}
\]

\[
n = \frac{PA}{R} \text{ (slope)}
\]

\[
n = \frac{(1 \times 10^5 \text{ Pa})(0.027 \text{ m}^2)(0.36 \text{ m})}{8.31 \text{ J/(mol} \cdot \text{K})}
\]

For a numerical answer that follows from substitutions into the correct expression above

\(n = 1.11 \text{ moles} \)
Question 7

10 points total

(a) 4 points

For a correct calculation of the photon frequency

\[f = \frac{c}{\lambda} \]

\[f = \left(3.00 \times 10^8 \text{ m/s}\right)\left(/\left(1.219 \times 10^{-7} \text{ m}\right) = 2.46 \times 10^{15} \text{ Hz} \]

For correct calculation of the photon energy in electron-volts or joules

\[E_{\text{ph}} = hf = \left(4.14 \times 10^{-15} \text{ eV} \cdot \text{s}\right)\left(2.46 \times 10^{15} \text{ Hz}\right) = 10.2 \text{ eV} \quad \text{OR} \quad 1.63 \times 10^{-18} \text{ J} \]

The two points above were also awarded for correctly using \(E = \frac{hc}{\lambda} \) or using \(E = pc \) and the answer from part (b).

For indicating that the photon energy is the difference between the two energy levels

\[E_4 = E_2 + E_{\text{ph}} \]

\[E_4 = -13.6 \text{ eV} + 10.2 \text{ eV} \]

For the correct numerical answer

\[E_4 = -3.4 \text{ eV} \quad \text{OR} \quad -5.44 \times 10^{-19} \text{ J} \]

Alternate solution

For use of energy levels and the Bohr model*

\[E_n = E_1 / n^2 \]

For identifying the ground state energy

\[E_1 = -54.4 \text{ eV} \]

For using the correct quantum number

\(n = 4 \)

For the correct answer

\[E_4 = -3.4 \text{ eV} \]

*Note: This equation is not on the equation sheet, nor is the Bohr model part of the Physics B curriculum. However, students were given credit for this correct solution.

(b) 2 points

\[p = \frac{h}{\lambda} \quad \text{OR} \quad p = \frac{E}{c} \]

For substitution of appropriate values into either of the above equations

\[p = \left(6.63 \times 10^{-34} \text{ J} \cdot \text{s}\right)\left(/\left(121.9 \times 10^{-9} \text{ m}\right) \quad \text{OR} \quad p = \left(1.63 \times 10^{-18} \text{ J}\right)\left(/\left(3.00 \times 10^8 \text{ m/s}\right) \]

For the correct answer with correct units

\[p = 5.44 \times 10^{-27} \text{ kg} \cdot \text{m/s} \quad \text{(or} \ 3.40 \times 10^{-8} \text{ eV} \cdot \text{s/m}) \]
(c) 2 points

\[K_{\text{max}} = E_{\text{ph}} - \phi \]

For correct substitution of photon energy from part (a), or a calculation of it 1 point

\[K_{\text{max}} = 10.2 \text{ eV} - 4.7 \text{ eV} \]

For the correct answer in eV 1 point

\[K_{\text{max}} = 5.5 \text{ eV} \]

(d) 2 points

\[K_{\text{max}} = W = qV \]

For using the definition of an eV as the work required to move a charge \(e \) through a 1-volt potential difference 1 point

For the correct answer with units of volts 1 point

\[V = 5.5 \text{ V} \]

Alternate solution

For understanding the relationship between electrical potential and energy 1 point

\[V = \frac{K_{\text{max}}}{q} \]

\[V = (5.5 \text{ eV}) \left(\frac{1.6 \times 10^{-19} \text{ J/eV}}{1.6 \times 10^{-19} \text{ C}} \right) \]

For the correct answer with units of volts 1 point

\[V = 5.5 \text{ V} \]